MITSUBISHI ELECTRIC INVERTER

FR-E800
INSTALLATION GUIDELINE FR-E820-0008(0.1K) to 0900(22K) FR-E840-0016(0.4K) to 0440(22K) FR-E820S-0008(0.1K) to 0110(2.2K) FR-E820-0008(0.1K)E to 0900(22K)E FR-E840-0016(0.4K)E to 0440(22K)E FR-E820S-0008(0.1K)E to 0110(2.2K)E FR-E820-0008(0.1K)SCE to 0900(22K)SCE FR-E840-0016(0.4K)SCE to 0440(22K)SCE FR-E820S-0008(0.1K)SCE to 0110(2.2K)SCE

[^0]
CONTENTS

1) INSTALLATION AND INSTRUCTIONS 1
(2) WIRING 5
(3) FAILSAFE OF THE SYSTEM WHICH USES THE INVERTER 31
44 PRECAUTIONS FOR USE OF THE INVERTER 29
[5] BASIC OPERATION 35
2) PARAMETER LIST 41
(7) INVERTER FAULT AND ALARM INDICATIONS. 55
3) SPECIFICATIONS 59
A) APPENDIX 65

For Maximum Safety

- Mitsubishi Electric transistorized inverters are not designed or manufactured to be used in equipment or systems in situations that can affect or endanger human life.
- When considering this product for operation in special applications such as machinery or systems used in passenger transportation, medical, aerospace, atomic power, electric power, or submarine repeating applications, please contact your nearest Mitsubishi Electric sales representative.
- Although this product was manufactured under conditions of strict quality control, you are strongly advised to install safety devices to prevent serious accidents when it is used in facilities where breakdowns of the product are likely to cause a serious accident.
- Please check upon receiving of the inverter whether this instruction manual corresponds to the delivered inverter. Compare the specifications on the capacity plate with the specifications given in this manual.

This section is specifically about safety matters

Do not attempt to install, operate, maintain or inspect the inverter until you have read through this Installation Guideline and appended documents carefully and can use the equipment correctly. Do not use the inverter until you have a full knowledge of the equipment, safety information and instructions.
Installation, operation, maintenance and inspection must be performed by qualified personnel. Here, qualified personnel means personnel who meets all the conditions below.

- A person who took a proper engineering training. Please note if you can take a proper engineering training at your local Mitsubishi Electric office. Such training may be available at your local Mitsubishi Electric office. Contact your local sales office for schedules and locations.
- A person who can access operating manuals for the protective devices (e.g. light curtain) connected to the safety control system.

A person who has read and familiarized himself/herself with the manuals.
In this Installation Guideline, the safety instruction levels are classified into "WARNING" and "CAUTION".
\triangle WARNING Assumes that incorrect handling may cause hazardous conditions, resulting in death or severe injury.
\triangle CAUTION
Assumes that incorrect handling may cause hazardous conditions, resulting in medium or slight injury, or may cause physical damage only.

Note that even the \triangle CAUTION level may lead to a serious consequence according to conditions. Please follow strictly the instructions of both levels because they are important to personnel safety.

Electric Shock Prevention

AWARNING

- While power is on or when the inverter is running, do not open the front cover. Otherwise you may get an electric shock.
- Do not run the inverter with the front cover removed. Otherwise, you may access the exposed high-voltage terminals or the charging part of the circuitry and get an electric shock.
- Even if power is off, do not remove the front cover except for wiring or periodic inspection.You may access the charged inverter circuits and get an electric shock.
- Before starting wiring or inspection, check to make sure that the LED display of the operation panel is off, wait for at least 10 minutes after the power supply has been switched off, and check that there are no residual voltage using a tester or the like. The capacitor is charged with high voltage for some time after power off and it is dangerous.
- This inverter must be earthed. Earthing must conform to the requirements of national and local safety regulations and electrical codes (JIS, NEC section 250, IEC 536 class 1 and other applicable standards). A neutral-point earthed power supply for 400 V class inverter in compliance with EN standard must be used.
- Any person who is involved in the wiring or inspection of this equipment should be fully competent to do the work
- Always install the inverter before wiring. Otherwise, you may get an electric shock or be injured.
- If your application requires by installation standards an RCD (residual current device) as up stream protection please select according to DIN VDE 0100-530 as following:
Single phase inverter type A or B
Three phase inverter only type B
(Additional instructions on the use of a residual current device are contained on page 66.)
- Perform setting dial and key operations with dry hands to prevent an electric shock. Otherwise you may get an electric shock.
- Do not subject the cables to scratches, excessive stress, heavy loads or pinching. Otherwise you may get an electric shock.
- Do not replace the cooling fan while power is on. It is dangerous to replace the cooling fan while power is on.
- Do not touch the printed circuit board or handle the cables with wet hands. You may get an electric shock.
- When measuring the main circuit capacitor capacity, the DC voltage is applied to the motor for 1 s at powering OFF. Never touch the motor terminal, etc. right after powering OFF to prevent an electric shock.
- A PM motor is a synchronous motor with high-performance magnets embedded in the rotor. Motor terminals holds high-voltage while the motor is running even after the inverter power is turned OFF. Before wiring or inspection, the motor must be confirmed to be stopped. In an application, such as fan and blower, where the motor is driven by the load, a low-voltage manual motor starter must be connected at the inverter's output side, and wiring and inspection must be performed while the motor starter is open. Otherwise you may get an electric shock.

Fire Prevention

©CAUTION

- Mount the inverter to incombustible material. Install the inverter on a nonflammable wall without holes (so that nobody can touch the inverter heatsink on the rear side, etc.). Mounting it to or near combustible material can cause a fire.
- If the inverter has become faulty, switch off the inverter power. A continuous flow of large current could cause a fire.
- Do not connect a resistor directly to the DC terminals $\mathrm{P} /+, \mathrm{N} /-$. This could cause a fire and destroy the inverter.
- The surface temperature of braking resistors can far exceed $100^{\circ} \mathrm{C}$ for brief periods. Make sure that there is adequate protection against accidental contact and a safe distance is maintained to other units and system parts.
- Be sure to perform daily and periodic inspections as specified in the Instruction Manual. If a product is used without any inspection, a burst, breakage, or a fire may occur.

\triangle CAUTION

- Apply only the voltage specified in the instruction manual to each terminal. Otherwise, burst, damage, etc. may occur.
- Ensure that the cables are connected to the correct terminals. Otherwise, burst, damage, etc. may occur.
- Always make sure that polarity is correct to prevent damage, etc. Otherwise, burst, damage, etc. may occur.
- While power is on or for some time after power-off, do not touch the inverter as it is hot and you may get burnt.

Additional Instructions

The following instructions must be also followed. If the product is handled incorrectly, it may cause unexpected fault, an injury, or an electric shock.

Transportation and installation

©CAUTION

- Any person who is opening a package using a sharp object, such as a knife and cutter, must wear gloves to prevent injuries caused by the edge of the sharp object.
- When carrying products, use correct lifting gear to prevent injury.
- Do not stand or rest heavy objects on the product.
- Do not stack the inverter boxes higher than the number recommended.
- When carrying the inverter, do not hold it by the front cover or setting dial; it may fall off or fail.
- During installation, caution must be taken not to drop the inverter as doing so may cause injuries.
- Ensure that installation position and material can withstand the weight of the inverter. Install according to the information in the instruction manual.
- Do not install the product on a hot surface.
- Check the inverter mounting orientation is correct.
- The inverter must be installed on a strong surface securely with screws so that it will not drop.
- Do not install or operate the inverter if it is damaged or has parts missing. This can result in breakdowns.
- Prevent other conductive bodies such as screws and metal fragments or other flammable substance such as oil from entering the inverter.
- As the inverter is a precision instrument, do not drop or subject it to impact.
- Use the inverter under the following environmental conditions. Otherwise, the inverter may be damaged.

Operating condition	FR-E800
Surrounding air temperature	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ (The rated current must be reduced at a temperature above $50^{\circ} \mathrm{C}$.)
Surrounding air humidity	95% RH or less (non-condensing) (With circuit board coating (conforming to IEC 60721-3-3 3C2)) 90% RH or less (non-condensing) (Without circuit board coating)
Storage temperature	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}^{* 1}$
Atmosphere	Indoors (free from corrosive gas, flammable gas, oil mist, dust and dirt)
Altitude/vibration	Maximum $3000 \mathrm{~m}^{* 2}, 5.9 \mathrm{~m} / \mathrm{s} 2$ or less at 10 to 55 Hz in X, Y, and Z directions

${ }^{* 1}$ Applicable to conditions for a short time, for example, in transit.
${ }^{* 2}$ For the installation at an altitude above 1000 m , consider a 3% reduction in the rated current per 500 m increase in altitude.

- If halogen-based materials (fluorine, chlorine, bromine, iodine, etc.) infiltrate into a Mitsubishi Electric product, the product will be damaged. Halogen-based materials are often included in fumigant, which is used to sterilize or disinfect wooden packages. When packaging, prevent residual fumigant components from being infiltrated into Mitsubishi Electric products, or use an alternative sterilization or disinfection method (heat disinfection, etc.) for packaging. Sterilization of disinfection of wooden package should also be performed before packaging the product.
- To prevent a failure, do not use the inverter with a part or material containing halogen flame retardant including bromine.

Wiring

$\triangle C A U T I O N$

- Do not install assemblies or components (e. g. power factor correction capacitors) on the inverter output side, which are not approved from Mitsubishi Electric. These devices on the inverter output side may be overheated or burn out.
- The direction of rotation of the motor corresponds to the direction of rotation commands (STF/STR) only if the phase sequence (U, V, W) is maintained.
- PM motor terminals ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) hold high-voltage while the PM motor is running even after the power is turned OFF. Before wiring, the PM motor must be confirmed to be stopped. Otherwise you may get an electric shock.
- Never connect a PM motor to the commercial power supply.

Applying the commercial power supply to input terminals ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) of a PM motor will burn the PM motor. The PM motor must be connected with the output terminals $(\mathrm{U}, \mathrm{V}, \mathrm{W})$ of the inverter.

Test operation and adjustment

\triangle CAUTION

- Before starting operation, confirm and adjust the parameters. A failure to do so may cause some machines to make unexpected motions.

AWARNING

- When you have chosen the retry function, stay away from the equipment as it will restart suddenly after an alarm stop.
- Since pressing the $\frac{\frac{S T O P}{R 2 S E T E}}{}$ key may not stop output depending on the function setting status, provide a circuit and switch separately to make an emergency stop (power off, mechanical brake operation for emergency stop, etc).
- Make sure that the start signal is off before resetting the inverter alarm. A failure to do so may restart the motor suddenly.
- Do not use a PM motor for an application where the PM motor is driven by its load and runs at a speed higher than the maximum motor speed.
- The inverter can be started and stopped via the serial port communications link or the field bus. However, please note that depending on the settings of the communications parameters it may not be possible to stop the system via these connections if there is an error in the communications system or the data line. In configurations like this it is thus essential to install additional safety hardware that makes it possible to stop the system in an emergency (e.g. controller inhibit via control signal, external motor contactor etc). Clear and unambiguous warnings about this must be posted on site for the operating and service staff.
- Use this inverter only with three-phase induction motors or with a PM motor. Connection of any other electrical equipment to the inverter output may damage the inverter as well as the equipment.
- Performing pre-excitation (LX signal and X13 signal) under torque control may start the motor running at a low speed even when the start signal (STF or STR) is not input. This product with the start command ON may also rotate the motor at a low speed when the speed limit value is set to zero. Confirm that the motor running does not cause any safety problems before performing pre-excitation.
- Do not modify the equipment.
- Do not perform parts removal which is not instructed in this manual. Doing so may lead to fault or damage of the inverter

ACAUTION

- The electronic thermal relay function does not guarantee protection of the motor from overheating. It is recommended to install both an external thermal and PTC thermistor for overheat protection.
- Do not use a magnetic contactor on the inverter input for frequent starting/stopping of the inverter. Otherwise, the life of the inverter decreases.
- Use a noise filter to reduce the effect of electromagnetic interference and follow the accepted EMC procedures for proper installation of frequency inverters. Otherwise nearby electronic equipment may be affected.
- Take appropriate measures regarding harmonics. Otherwise this can endanger compensation systems or overload generators.
- When driving a 400 V class motor by the inverter, the motor must be an insulation-enhanced motor or measures must be taken to suppress surge voltage. Surge voltage attributable to the wiring constants may occur at the motor terminals, deteriorating the insulation of the motor.
- Use a motor designed for inverter operation. (The stress for motor windings is bigger than in line power supply).
- When parameter clear or all clear is performed, set again the required parameters before starting operations. Each parameter returns to the initial value.
- The inverter can be easily set for high-speed operation. Before changing its setting, fully examine the performances of the motor and machine.
- The DC braking function of the frequency inverter is not designed to continuously hold a load. Use an electro-mechanical holding brake on the motor for this purpose.
- Before running an inverter which had been stored for a long period, always perform inspection and test operation.
- For prevention of damage due to static electricity, touch nearby metal before touching this product to eliminate static electricity from your body.
- Only one PM motor can be connected to an inverter.
- A PM motor must be used under PM motor control. When operating with PM motor control, a synchronous motor, induction motor or synchronous induction motor may only be used when it is a PM motor.
- Do not connect a PM motor under the induction motor control settings (initial settings). Do not use an induction motor under the PM motor control settings. It will cause a failure.
- In the system with a PM motor, the inverter power must be turned ON before closing the contacts of the contactor at the output side.
- When the emergency drive operation is performed, the operation is continued or the retry is repeated even when a fault occurs, which may damage or burn the inverter and motor. Before restarting the normal operation after using the emergency drive function, make sure that the inverter and motor have no fault.
- To maintain the security (confidentiality, integrity, and availability) of the inverter and the system against unauthorized access, Dos*1 attacks, computer viruses, and other cyberattacks from external devices via network, take appropriate measures such as firewalls, virtual private networks (VPNs), and antivirus solutions. We shall have no responsibility or liability for any problems involving inverter trouble and system trouble by DoS attacks, unauthorized access, computer viruses, and other cyberattacks.
- Depending on the network environment, the inverter may not operate as intended due to delays or disconnection in communication. Carefully consider the conditions and safety for the inverter on site.
*1 DoS: A denial-of-service (DoS) attack disrupts services by overloading systems or exploiting vulnerabilities, resulting in a denial-ofservice (DoS) state.

Emergency stop

\triangle CAUTION

- Provide a safety backup such as an emergency brake which will prevent the machine and equipment from hazardous conditions if the inverter fails.
- When the breaker on the inverter primary side trips, check for the wiring fault (short circuit), damage to internal parts of the inverter, etc. Identify the cause of the trip, then remove the cause and power on the breaker.
- When the protective function is activated (i. e. the frequency inverter switches off with an error message), take the corresponding corrective action as described in the inverter manual, then reset the inverter, and resume operation.

Maintenance, inspection and parts replacement

\triangle CAUTION

- Do not carry out a megger (insulation resistance) test on the control circuit of the inverter. It will cause a failure.

Disposing of the inverte

©CAUTION

- Treat as industrial waste.

General instructions

Many of the diagrams and drawings in instruction manuals show the inverter without a cover, or partially open. Never run the inverter in this status. Always replace the cover and follow instruction manuals when operating the inverter. For more details on the PM motor, refer to the Instruction Manual of the PM motor.

1 INSTALLATION AND INSTRUCTIONS

Unpack the product and check the rating plate and the capacity plate of the inverter to ensure that the model agrees with the order and the product is intact.

1.1 Inverter Type

- A: The voltage class is shown.

Symbol	Voltage class
2	200 V class
4	400 V class

- B : The number of phases of the power source is shown.

Symbol	Description
None	Three-phase input
S	Single-phase input

- C: The inverter rated capacity or the inverter rated current is shown.

Symbol	Description
0.1 K to 22 K	Inverter ND rated capacity (kW)
0008 to 0900	Inverter ND rated current (A)

- D: The communication type and the functional safety specification are shown.

Symbol	Communication / functional safety
None	Standard model (RS-485 + SIL2/PLd)
E	Ethernet model (Ethernet + SIL2/PLd)
SCE	Safety communication model (Ethernet + SIL3/PLe)

- E: The output specification for monitoring and the rated frequency are shown for the standard model and the communication protocol group is shown for the Ethernet model and the safety communication model. The control logic is fixed to the source logic for the safety communication model.

| Symbol | Monitoring/protocol specifications | Rated frequency
 (initial setting) | Control logic
 Safety stop
 signal |
| :--- | :--- | :--- | :---: | :---: |
| | Pulse (terminal FM) | | Sink logic |
| (initial status) | | |

*1 The initial status of the control logic differs depending on the inverter model.
Sink logic for the models indicated with the rated capacity (kW)
Source logic for the models indicated with the rated current (A).

- F: Availability of circuit board coating / plated conductors is shown.

Symbol	Circuit board coating*1	Plated conductor
None	Without coating	Without plated conductors
-60	With coating	Without plated conductors
$-06^{* 2}$	With coating	With plated conductors

*1 Conforming to IEC 60721-3-3 3C2
*2 Applicable for the FR-E820-0470(11K) or higher, and the FR-E840-0230(11K) or higher.

CAUTION

- In this Instruction Manual, the inverter model name consists of the inverter rated current and the applicable motor capacity. (Example) FR-E820-0008(0.1K)

1.2 Accessory

- Fan cover fixing screws

These screws are necessary for compliance with the EU Directives. For details, refer to the document enclosed with the product.

Capacity	Screw size (mm)	Quantity
FR-E820-0080(1.5K) to FR-E820-0330(7.5K),	$\mathrm{M} 3 \times 35$	1
FR-E840-0016(0.4K) to FR-E840-0170(7.5K),		
FR-E820S-0080(1.5K) or higher		
FR-E820-0470(11K), FR-E820-0600(15K), FR-E840-0230(11K), FR-E840-0300(15K)	$\mathrm{M} 3 \times 35$	2
FR-E820-0760(18.5K) or higher, FR-E840-0380(18.5K) or higher	$\mathrm{M} 3 \times 50$	2

1.3 How to read the SERIAL number

The SERIAL consists of two symbols, three characters indicating the production year and month, and six characters indicating the control number.
The last two digits of the production year are indicated as the Year, and the Month is indicated by 1 to $9, X$ (October), Y (November), or Z (December).

1.4 Installation of the inverter

Inverter placement

FR-E840-0016(0.4K) to 0170(7.5K)
FR-E820S-0008(0.1K) to 0110(2.2K)

FR-E820-0240(5.5K) or higher
FR-E840-0230(11K) or higher

- Remove the front cover (or the lower front cover) and wiring cover to fix the inverter.
- Install the inverter on a strong surface securely with screws.
- Leave enough clearances and take cooling measures.
- Avoid places where the inverter is subjected to direct sunlight, high temperature and high humidity.
- Install the inverter on a nonflammable wall surface.
- When encasing multiple inverters in an enclosure, install them in parallel as a cooling measure.

Installation orientation of the inverter

Install the inverter on a wall as specified. Do not mount it horizontally or in any other way.

- Above the inverter

Heat is blown up from inside the inverter by the small fan built in the unit. Any equipment placed above the inverter should be heat resistant.

- Arrangement of multiple inverters

When multiple inverters are placed in the same enclosure, generally arrange them horizontally as shown in the figure (a). When it is inevitable to arrange them vertically to minimize space, take such measures as to provide guides between the inverters since heat generated in the inverters in bottom row can increase the temperatures in the inverters in top row, causing inverter failures.

1.5 Environment

Before installation, check that the environment meets following specifications:

Surrounding air temperature	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ (The rated current must be reduced at a temperature above $50^{\circ} \mathrm{C}$.)
Ambient humidity	With circuit board coating (conforming to class 3C2 in IEC 60721-3-3): 95\% RH or less (non-condensing) Without circuit board coating: 90% RH or less (non-condensing)
Storage temperature	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ *
Atmosphere	Indoors (free from corrosive gas, flammable gas, oil mist, dust and dirt)
Altitude	Maximum $3000 \mathrm{~m}{ }^{* 2}$
Vibration	$5.9 \mathrm{~m} / \mathrm{s}^{2}$ or less at 10 to 55 Hz (in either X, Y, or Z direction)

[^1]*2 For installation at an altitude above 1000 m , consider a 3% reduction in the rated current per 500 m increase in altitude.

2 WIRING

2.1 Terminal connection diagrams

2.1.1 Standard model (sink logic)

For footnotes *1 to *10 refer to next page.
${ }^{*}$ Remove the jumper between P1 and P/+ to connect the DC reactor.
${ }^{* 2}$ The function of these terminals can be changed using the Input terminal function selection (Pr. 178 to Pr.184). (Refer to the FR-E800 Instruction Manual (Function).)
*3 The initial setting varies depending on the specification.
${ }^{*} 4$ Terminal input specifications can be changed by analog input specification switchover (Pr.73, Pr.267). To input voltage, set the voltage/current input selection switch to " V ". To input current, set the switch to "l". The initial setting varies depending on the specification. (Refer to the FR-E800 Instruction Manual (Function).)
${ }^{*} 5$ It is recommended to use $2 \mathrm{~W} 1 \mathrm{k} \Omega$ when the frequency setting signal is changed frequently.
*6 The FR-E820-0008(0.1K), FR-E820-0015(0.2K), FR-E820S-0008(0.1K), and FR-E820S-0015(0.2K) are not equipped with brake transistors.
${ }^{* 7}$ Brake resistor (FR-ABR, MRS, MYS)
Install a thermal relay to prevent overheating and damage of brake resistors. (A brake resistor cannot be connected to the FR-E8200008(0.1K), FR-E820-0015(0.2K), FR-E820S-0008(0.1K), and FR-E820S-0015(0.2K).) (Refer to Instruction Manual (Connection)).

* 8 The function of these terminals can be changed using the Pr. 192 ABC terminal function selection.
${ }^{* 9}$ The function of these terminals can be changed using the Output terminal function selection (Pr. 190 or Pr.191). (Refer to the FR-E800 Instruction Manual (Function).)
${ }^{* 10}$ Not required when calibrating the scale with the operation panel.

CAUTION

- To prevent a malfunction due to noise, keep the signal cables 10 cm or more away from the power cables. Also, keep the cables of the main circuit for input and output separated.
- After wiring, wire offcuts must not be left in the inverter.

Wire offcuts can cause a fault, failure or malfunction. Always keep the inverter clean.
When drilling mounting holes in an enclosure etc., take caution not to allow chips and other foreign matter to enter the inverter.

- Set the switches of the voltage/current input selection switch assembly correctly. Incorrect setting may cause a fault, failure or malfunction.
- The output of the single-phase power input model is three-phase 200 V .

2.1.2 Standard model (source logic)

For footnotes *1 to *10 refer to next page.
${ }^{*}$ Remove the jumper between P1 and P/+ to connect the DC reactor.
${ }^{* 2}$ The function of these terminals can be changed using the Input terminal function selection (Pr. 178 to Pr.184). (Refer to the FR-E800 Instruction Manual (Function).)
*3 The initial setting varies depending on the specification.
${ }^{*} 4$ Terminal input specifications can be changed by analog input specification switchover (Pr.73, Pr.267). To input voltage, set the voltage/current input selection switch to " V ". To input current, set the switch to "l". The initial setting varies depending on the specification. (Refer to the FR-E800 Instruction Manual (Function).)
${ }^{*} 5$ It is recommended to use $2 \mathrm{~W} 1 \mathrm{k} \Omega$ when the frequency setting signal is changed frequently.
*6 The FR-E820-0008(0.1K), FR-E820-0015(0.2K), FR-E820S-0008(0.1K), and FR-E820S-0015(0.2K) are not equipped with brake transistors.
${ }^{* 7}$ Brake resistor (FR-ABR, MRS, MYS)
Install a thermal relay to prevent overheating and damage of brake resistors. (A brake resistor cannot be connected to the FR-E8200008(0.1K), FR-E820-0015(0.2K), FR-E820S-0008(0.1K), and FR-E820S-0015(0.2K).) (Refer to Instruction Manual (Connection)).

* 8 The function of these terminals can be changed using the Pr. 192 ABC terminal function selection.
${ }^{* 9}$ The function of these terminals can be changed using the Output terminal function selection (Pr. 190 or Pr.191). (Refer to the FR-E800 Instruction Manual (Function).)
${ }^{* 10}$ Not required when calibrating the scale with the operation panel.

CAUTION

- To prevent a malfunction due to noise, keep the signal cables 10 cm or more away from the power cables. Also, keep the cables of the main circuit for input and output separated.
- After wiring, wire offcuts must not be left in the inverter.

Wire offcuts can cause a fault, failure or malfunction. Always keep the inverter clean.
When drilling mounting holes in an enclosure etc., take caution not to allow chips and other foreign matter to enter the inverter.

- Set the switches of the voltage/current input selection switch assembly correctly. Incorrect setting may cause a fault, failure or malfunction.
- The output of the single-phase power input model is three-phase 200 V .

2.1.3 Ethernet mode (sink logic)

For footnotes *1 to *8 refer to next page.
${ }^{*}$ Remove the jumper between P1 and P/+ to connect the DC reactor.
*2 The function of these terminals can be changed using the Input terminal function selection (Pr. 178 to Pr.179). (Refer to the FR-E800 Instruction Manual (Function).)
${ }^{*} 3$ The initial setting varies depending on the specification.
${ }^{*} 4$ Terminal input specifications can be changed by analog input specification switchover (Pr.73, Pr.267). To input voltage, set the voltage/ current input selection switch to "V". To input current, set the switch to "I". The initial setting varies depending on the specification. (Refer to the FR-E800 Instruction Manual (Function).)
${ }^{*} 5$ It is recommended to use $2 \mathrm{~W} 1 \mathrm{k} \Omega$ when the frequency setting signal is changed frequently.

* 6 The FR-E820-0008(0.1K), FR-E820-0015(0.2K), FR-E820S-0008(0.1K), and FR-E820S-0015(0.2K) are not equipped with brake transistors.
*7 Brake resistor (FR-ABR, MRS, MYS)
Install a thermal relay to prevent overheating and damage of brake resistors. (A brake resistor cannot be connected to the FR-E8200008(0.1K), FR-E820-0015(0.2K), FR-E820S-0008(0.1K), and FR-E820S-0015(0.2K).) (Refer to Instruction Manual (Connection))
*8 The function of these terminals can be changed using the Pr. 192 ABC terminal function selection.

CAUTION

- To prevent a malfunction due to noise, keep the signal cables 10 cm or more away from the power cables. Also, keep the cables of the main circuit for input and output separated.
- After wiring, wire offcuts must not be left in the inverter.

Wire offcuts can cause a fault, failure or malfunction. Always keep the inverter clean.
When drilling mounting holes in an enclosure etc., take caution not to allow chips and other foreign matter to enter the inverter.

- Set the switches of the voltage/current input selection switch assembly correctly. Incorrect setting may cause a fault, failure or malfunction.
- The output of the single-phase power input model is three-phase 200 V .

2.1.4 Ethernet mode (source logic)

For footnotes *1 to *8 refer to next page.
${ }^{*}$ Remove the jumper between P1 and P/+ to connect the DC reactor.
*2 The function of these terminals can be changed using the Input terminal function selection (Pr. 178 to Pr.179). (Refer to the FR-E800 Instruction Manual (Function).)
${ }^{*} 3$ The initial setting varies depending on the specification.
${ }^{*} 4$ Terminal input specifications can be changed by analog input specification switchover (Pr.73, Pr.267). To input voltage, set the voltage/ current input selection switch to "V". To input current, set the switch to "I". The initial setting varies depending on the specification. (Refer to the FR-E800 Instruction Manual (Function).)
${ }^{*} 5$ It is recommended to use $2 \mathrm{~W} 1 \mathrm{k} \Omega$ when the frequency setting signal is changed frequently.

* 6 The FR-E820-0008(0.1K), FR-E820-0015(0.2K), FR-E820S-0008(0.1K), and FR-E820S-0015(0.2K) are not equipped with brake transistors.
*7 Brake resistor (FR-ABR, MRS, MYS)
Install a thermal relay to prevent overheating and damage of brake resistors. (A brake resistor cannot be connected to the FR-E8200008(0.1K), FR-E820-0015(0.2K), FR-E820S-0008(0.1K), and FR-E820S-0015(0.2K).) (Refer to Instruction Manual (Connection))
*8 The function of these terminals can be changed using the Pr. 192 ABC terminal function selection.

CAUTION

- To prevent a malfunction due to noise, keep the signal cables 10 cm or more away from the power cables. Also, keep the cables of the main circuit for input and output separated.
- After wiring, wire offcuts must not be left in the inverter.

Wire offcuts can cause a fault, failure or malfunction. Always keep the inverter clean.
When drilling mounting holes in an enclosure etc., take caution not to allow chips and other foreign matter to enter the inverter.

- Set the switches of the voltage/current input selection switch assembly correctly. Incorrect setting may cause a fault, failure or malfunction.
- The output of the single-phase power input model is three-phase 200 V .

2.1.5 Safety communication model

Sink logic
© Main circuit terminal

For footnotes *1 to *6 refer to next page.
*1 Remove the jumper between P1 and P/+ to connect the DC reactor.
*2 Terminal input specifications can be changed by analog input specification switchover (Pr.73, Pr.267). To input voltage, set the voltage/current input selection switch to " V ". To input current, set the switch to "I". The initial setting varies depending on the specification. (Refer to the FR-E800 Instruction Manual (Function).)
*3 It is recommended to use $2 \mathrm{~W} 1 \mathrm{k} \Omega$ when the frequency setting signal is changed frequently.
*4 The FR-E820-0008(0.1K), FR-E820-0015(0.2K), FR-E820S-0008(0.1K), and FR-E820S-0015(0.2K) are not equipped with brake transistors.
*5 Brake resistor (FR-ABR, MRS, MYS)
Install a thermal relay to prevent overheating and damage of brake resistors. (A brake resistor cannot be connected to the FR-E8200008(0.1K), FR-E820-0015(0.2K), FR-E820S-0008(0.1K), and FR-E820S-0015(0.2K).) (Refer to Instruction Manual (Connection)).

* 6 The function of these terminals can be changed using the Pr. 192 ABC terminal function selection.

CAUTION

- To prevent a malfunction due to noise, keep the signal cables 10 cm or more away from the power cables. Also, keep the cables of the main circuit for input and output separated.
- After wiring, wire offcuts must not be left in the inverter.

Wire offcuts can cause a fault, failure or malfunction. Always keep the inverter clean.
When drilling mounting holes in an enclosure etc., take caution not to allow chips and other foreign matter to enter the inverter.

- Set the switches of the voltage/current input selection switch assembly correctly. Incorrect setting may cause a fault, failure or malfunction.
- The output of the single-phase power input model is three-phase 200 V .

2.2 Main circuit terminal

2.2.1 Terminal layout and wiring

- Three-phase 200/400 V class

FR-E820-0760(18.5K), 0900(22K)
FR-E840-0380(18.5K), 0440(22K)

- Single-phase 200 V class

CAUTION

- The power supply cables must be connected to R/L1, S/L2, T/L3. Never connect the power cable to the U, V, W, of the inverter. Doing so will damage the inverter. (Phase sequence needs not to be matched.)
- Connect the motor to U, V, W. At this time turning on the forward rotation switch (signal) rotates the motor in the clockwise direction when viewed from the motor shaft. (The phase sequence must be matched.)

- Handling of the wiring cover

(FR-E820-0470(11K) to 0900(22K), FR-E840-0230(11K) to 0440(22K))
For the hook of the wiring cover, cut off the necessary parts using a pair of needle-nose pliers etc.

CAUTION

- Cut off the same number of lugs as wires. If parts where no wire is put through have been cut off (10 mm or more), protective structure (IEC 60529) becomes an open type (IP00).

2.3 Wiring fundamentals

2.3.1 Applicable cables and wiring length

For the ND rating

- Three-phase 200 V class (220 V input power supply, without a power factor improving AC or DC reactor)

Applicable inverter type FR-E820-	$\begin{aligned} & \text { Terminal } \\ & \text { screw } \\ & \text { size *4 } \end{aligned}$	Tightening torque [Nm]	Crimping Terminal		Cable sizes								
					HIV, etc. $\left[\mathrm{mm}^{2}\right]^{* 1}$				AWG/MCM *2		PVC, etc. [mm $\left.{ }^{2}\right]^{* 3}$		
			R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	U, V, W	P/+, P1	Earth cable gauge	R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	U, V, W	Earth cable gauge
$\begin{aligned} & \hline 0008(0.1 \mathrm{~K}) \text { to } \\ & 0050(0.75 \mathrm{~K}) \end{aligned}$	M3.5	1.2	2-3.5	2-3.5	2	2	2	2	14	14	2.5	2.5	2.5
$\begin{aligned} & 0080(1.5 \mathrm{~K}), \\ & 0110(2.2 \mathrm{~K}) \end{aligned}$	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
0175(3.7K)	M4	1.5	5.5-4	5.5-4	3.5	3.5	3.5	3.5	12	12	4	4	4
0240(5.5K)	M5	2.5	5.5-5	5.5-5	5.5	5.5	5.5	5.5	10	10	6	6	6
0330(7.5K)	M5	2.5	14-5	8-5	14	8	8	5.5	6	8	16	10	6
0470(11K)	M5	2.5	14-5	14-5	14	14	14	8	6	6	16	16	16
0600(15K)	M6 (M5)	4.4	22-6	22-6	22	22	22	14	4	4	25	25	16
0760(18.5K)	M8 (M6)	7.8	38-8	22-8	38	22	38	14	2	2	35	25	25
0900(22K)	M8 (M6)	7.8	38-8	38-8	38	38	38	22	2	2	35	35	25

- Three-phase 200 V class (220 V input power supply, with a power factor improving AC or DC reactor)

Applicable inverter type FR-E820-	$\begin{aligned} & \text { Terminal } \\ & \text { screw } \\ & \text { size *4 } \end{aligned}$	Tightening torque [Nm]	Crimping Terminal		Cable sizes								
					HIV, etc. [$\left.\mathrm{mm}^{2}\right]^{* 1}$				AWG/MCM *2		PVC, etc. [$\left.\mathrm{mm}^{2}\right]^{* 3}$		
			R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	$\mathbf{U}, \mathbf{V}, \mathbf{W}$	P/+, P1	Earth cable gauge	R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	U, V, W	Earth cable gauge
$\begin{array}{\|l} \hline 0008(0.1 \mathrm{~K}) \text { to } \\ 0050(0.75 \mathrm{~K}) \\ \hline \end{array}$	M3.5	1.2	2-3.5	2-3.5	2	2	2	2	14	14	2.5	2.5	2.5
$\begin{aligned} & \text { 0080(1.5K), } \\ & 0110(2.2 \mathrm{~K}) \end{aligned}$	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
0175(3.7K)	M4	1.5	5.5-4	5.5-4	3.5	3.5	3.5	3.5	12	12	4	4	4
0240(5.5K)	M5	2.5	5.5-5	5.5-5	5.5	5.5	5.5	5.5	10	10	6	6	6
0330(7.5K)	M5	2.5	8-5	8-5	8	8	8	5.5	8	8	10	10	6
0470(11K)	M5	2.5	14-5	14-5	14	14	14	8	6	6	16	16	16
0600(15K)	M6 (M5)	4.4	22-6	22-6	22	22	22	14	4	4	25	25	16
0760(18.5K)	M8 (M6)	7.8	22-8	22-8	22	22	38	14	4	2	25	25	25
0900(22K)	M8 (M6)	7.8	38-8	38-8	38	38	38	22	2	2	35	35	25

- Three-phase 400 V class (440 V input power supply, without a power factor improving AC or DC reactor)

Applicable inverter type FR-E840-	Terminal screw size *4	Tightening torque [Nm]	Crimping terminal		Cable sizes								
					HIV, etc. [$\mathrm{mm}^{2}{ }^{\text {] }}{ }^{* 1}$				AWG/MCM *2		PVC, etc. [$\left.\mathrm{mm}^{2}\right]^{* 3}$		
			R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	U, V, W	P/+, P1	Earth cable gauge	R/L1, S/L2, T/L3	U, V, W	$\begin{aligned} & \text { R/L1, } \\ & \text { S/L2, } \\ & \text { T/L3 } \end{aligned}$	U, V, W	Earth cable gauge
$\begin{aligned} & \text { 0016(0.4K) to } \\ & 0095(3.7 \mathrm{~K}) \end{aligned}$	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
0120(5.5K)	M4	1.5	5.5-4	2-4	3.5	2	3.5	3.5	12	14	4	2.5	4
0170(7.5K)	M4	1.5	5.5-4	5.5-4	3.5	3.5	3.5	3.5	12	12	4	4	4
0230(11K)	M4	1.5	5.5-4	5.5-4	5.5	5.5	5.5	5.5	10	10	6	6	10
0300(15K)	M5	2.5	8-5	8-5	8	8	8	5.5	8	8	10	10	10
0380(18.5K)	M6	4.4	14-6	8-6	14	8	14	8	6	6	16	10	16
0440(22K)	M6	4.4	14-6	14-6	14	14	22	14	6	6	16	16	16

- Three-phase 400 V class (440 V input power supply, with a power factor improving AC or DC reactor)

Applicable inverter type FR-E840-	Terminal screw size *4	Tightening torque [Nm]	Crimping terminal		Cable sizes								
					HIV, etc. $\left[\mathrm{mm}^{2}\right]^{* 1}$				AWG/MCM *2		PVC, etc. [$\left.\mathrm{mm}^{2}\right]^{* 3}$		
			R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	U, V, W	P/+, P1	Earth cable gauge	R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	U, V, W	Earth cable gauge
$\begin{aligned} & \text { 0016(0.4K) to } \\ & 0095(3.7 \mathrm{~K}) \end{aligned}$	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
0120(5.5K)	M4	1.5	2-4	2-4	2	2	3.5	2	14	14	2.5	2.5	2.5
0170(7.5K)	M4	1.5	5.5-4	5.5-4	3.5	3.5	3.5	3.5	12	12	4	4	4
0230(11K)	M4	1.5	5.5-4	5.5-4	5.5	5.5	5.5	5.5	10	10	6	6	6
0300(15K)	M5	2.5	8-5	8-5	8	8	8	5.5	8	8	10	10	10
0380(18.5K)	M6	4.4	8-6	8-6	8	8	14	8	8	8	10	10	10
0440(22K)	M6	4.4	14-6	14-6	14	14	22	14	6	6	16	16	16

For footnotes *1 to *4 refer to next page.

- Single-phase 200 V class (220 V input power supply, without a power factor improving AC or DC reactor)

Applicable inverter type FR-E820S-	$\begin{aligned} & \text { Terminal } \\ & \text { screw } \\ & \text { size *4 } \end{aligned}$	Tightening torque [Nm]	Crimping terminal		Cable sizes								
					HIV, etc. $\left[\mathrm{mm}^{2}\right]^{* 1}$				AWG/MCM *2		PVC, etc. [$\left.\mathrm{mm}^{2}\right]^{* 3}$		
			R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	U, V, W	P/+, P1	Earth cable gauge	R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	U, V, W	Earth cable gauge
$\begin{aligned} & \text { 0008(0.1K) to } \\ & 0030(0.4 \mathrm{~K}) \end{aligned}$	M3.5	1.2	2-3.5	2-3.5	2	2	2	2	14	14	2.5	2.5	2.5
$\begin{aligned} & \text { 0050(0.75K), } \\ & 0080(1.5 \mathrm{~K}) \end{aligned}$	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
0110(2.2K)	M4	1.5	5.5-4	2-4	3.5	2	2	2	12	14	4	2.5	2.5

- Single-phase 200 V class (220 V input power supply, with a power factor improving AC or DC reactor)

Applicable inverter type FR-E820S-	Terminal screw size ${ }^{* 4}$	Tightening torque [Nm]	Crimping terminal		Cable sizes								
					HIV, etc. $\left[\mathrm{mm}^{2}\right]^{* 1}$				AWG/MCM *2		PVC, etc. [$\left.\mathrm{mm}^{2}\right]^{* 3}$		
			R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	U, V, W	P/+, P1	Earth cable gauge	R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	U, V, W	Earth cable gauge
$\begin{aligned} & \text { 0008(0.1K) to } \\ & 0030(0.4 \mathrm{~K}) \end{aligned}$	M3.5	1.2	2-3.5	2-3.5	2	2	2	2	14	14	2.5	2.5	2.5
$\begin{aligned} & \text { 0050(0.75K), } \\ & 0080(1.5 \mathrm{~K}) \end{aligned}$	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
0110(2.2K)	M4	1.5	5.5-4	2-4	3.5	2	2	2	12	14	4	2.5	2.5

${ }^{* 1}$ The cable size is that of the HIV cable (600 V grade heat-resistant PVC insulated wire) etc. with continuous maximum permissible temperature of $75^{\circ} \mathrm{C}$. It assumes a surrounding air temperature of $50^{\circ} \mathrm{C}$ or lower and the wiring distance of 20 m or shorter.
*2 The cable size is that of the THHW cable with continuous maximum permissible temperature of $75^{\circ} \mathrm{C}$. It assumes a surrounding air temperature of $40^{\circ} \mathrm{C}$ or lower and the wiring distance of 20 m or shorter.
(For the use in the United States or Canada, refer to "Instructions for UL and cUL" in the document enclosed with the product.)
*3 The cable size is that of the PVC cable with continuous maximum permissible temperature of $70^{\circ} \mathrm{C}$. It assumes a surrounding air temperature of $40^{\circ} \mathrm{C}$ or lower and the wiring distance of 20 m or shorter. (Selection example mainly for use in Europe.)
*4 The screw size for terminals R/L1, S/L2, T/L3, U, V, W, PR, P/+, N/-, and P1, and the earthing (grounding) terminal is shown. The screw size for earthing (grounding) the FR-E820-0600(15K) to FR-E820-0900(22K) is indicated in parentheses.

For the LD rating

- Three-phase 200 V class (220 V input power supply, without a power factor improving AC or DC reactor)

Applicable inverter type FR-E820-	Terminal screw size *1	Tightening torque [Nm]	Crimping terminal		Cable sizes								
					HIV, etc. $\left[\mathrm{mm}^{2}\right]^{*}{ }^{\text {2 }}$				AWG/MCM *3		PVC, etc. [$\left.\mathrm{mm}^{2}\right]^{* 4}$		
			R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	$\mathbf{U}, \mathbf{V}, \mathbf{W}$	P/+, P1	Earth cable gauge	R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	U, V, W	Earth cable gauge
$\begin{aligned} & 0008(0.1 \mathrm{~K}) \text { to } \\ & 0050(0.75 \mathrm{~K}) \end{aligned}$	M3.5	1.2	2-3.5	2-3.5	2	2	2	2	14	14	2.5	2.5	2.5
0080(1.5K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
0110(2.2K)	M4	1.5	5.5-4	5.5-4	3.5	3.5	3.5	3.5	12	12	4	4	4
0175(3.7K)	M4	1.5	5.5-4	5.5-4	5.5	5.5	5.5	5.5	10	10	6	6	6
0240(5.5K)	M5	2.5	8-5	5.5-5	14	5.5	14	5.5	6	10	16	6	6
0330(7.5K)	M5	2.5	14-5	14-5	14	14	14	8	6	6	16	16	10
0470(11K)	M5	2.5	22-5	22-5	22	22	22	14	4	4	25	25	16
0600(15K)	M6	4.4	38-6	22-6	38	22	38	14	2	4	35	25	25
0760(18.5K)	M8 (M6)	7.8	38-8	38-8	38	38	38	22	2	2	35	35	25
0900(22K)	M8 (M6)	7.8	60-8	60-8	60	60	60	22	1/0	1/0	50	50	25

- Three-phase 200 V class (220 V input power supply, with a power factor improving AC or DC reactor)

Applicable inverter type FR-E820-	Terminal screw size *1	Tightening torque [Nm]	Crimping terminal		Cable sizes								
					HIV, etc. $\left[\mathrm{mm}^{2}\right]^{* 2}$				AWG/MCM *3		PVC, etc. $\left[\mathrm{mm}^{2}\right]^{* 4}$		
			R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	U, V, W	P/+, P1	Earth cable gauge	R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	U, V, W	Earth cable gauge
$\begin{aligned} & \text { 0008(0.1K) to } \\ & 0050(0.75 \mathrm{~K}) \end{aligned}$	M3.5	1.2	2-3.5	2-3.5	2	2	2	2	14	14	2.5	2.5	2.5
0080(1.5K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
0110(2.2K)	M4	1.5	5.5-4	5.5-4	3.5	3.5	3.5	3.5	12	12	4	4	4
0175(3.7K)	M4	1.5	5.5-4	5.5-4	5.5	5.5	5.5	5.5	10	10	6	6	6
0240(5.5K)	M5	2.5	5.5-5	5.5-5	5.5	5.5	14	5.5	10	10	6	6	6
0330(7.5K)	M5	2.5	14-5	14-5	14	14	14	8	6	6	16	16	10
0470(11K)	M5	2.5	22-5	22-5	22	22	22	14	4	4	25	25	16
0600(15K)	M6	4.4	22-6	22-6	22	22	38	14	4	4	25	25	25
0760(18.5K)	M8 (M6)	7.8	38-8	38-8	38	38	38	22	2	2	35	35	25
0900(22K)	M8 (M6)	7.8	60-8	60-8	60	60	60	22	1/0	1/0	50	50	25

- Three-phase 400 V class (440 V input power supply, without a power factor improving AC or DC reactor)

Applicable inverter Type FR-E840-	Terminal screw size *1	Tightening torque [Nm]	Crimping terminal		Cable Sizes								
					HIV, etc. [$\left.\mathrm{mm}^{2}\right]^{* 2}$				AWG/MCM *3		PVC, etc. [$\left.\mathrm{mm}^{2}\right]^{* 4}$		
			R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	U, V, W	P/+, P1	Earth cable gauge	R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	U, V, W	Earth cable gauge
$\begin{aligned} & \text { 0016(0.4K) to } \\ & 0060(2.2 \mathrm{~K}) \end{aligned}$	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
0095(3.7K)	M4	1.5	2-4	2-4	2	2	3.5	2	12	14	2.5	2.5	2.5
0120(5.5K)	M4	1.5	5.5-4	5.5-4	3.5	3.5	3.5	3.5	12	12	4	4	4
0170(7.5K)	M4	1.5	5.5-4	5.5-4	5.5	5.5	5.5	5.5	10	10	6	6	6
0230(11K)	M4	1.5	8-4	5.5-4	8	5.5	8	5.5	8	10	10	6	10
0300(15K)	M5	2.5	14-5	8-5	14	8	14	8	6	8	16	10	16
0380(18.5K)	M6	4.4	14-6	14-6	14	14	22	14	6	6	16	16	16
0440(22K)	M6	4.4	22-6	22-6	22	22	22	14	4	4	25	25	16

- Three-phase 400 V class (440 V input power supply, with a power factor improving AC or DC reactor)

Applicable inverter Type FR-E840- \square	Terminal screw size *1	Tightening torque [Nm]	Crimping terminal		Cable Sizes								
					HIV, etc. $\left[\mathrm{mm}^{2}\right]^{* 2}$				AWG/MCM *3		PVC, etc. [$\left.\mathrm{mm}^{2}\right]^{* 4}$		
			R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	U, V, W	P/+, P1	Earth cable gauge	R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	U, V, W	Earth cable gauge
$\begin{aligned} & \text { 0016(0.4K) to } \\ & 0060(2.2 \mathrm{~K}) \end{aligned}$	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
0095(3.7K)	M4	1.5	2-4	2-4	2	2	3.5	2	14	14	2.5	2.5	2.5
0120(5.5K)	M4	1.5	5.5-4	5.5-4	3.5	3.5	3.5	3.5	12	12	4	4	4
0170(7.5K)	M4	1.5	5.5-4	5.5-4	5.5	5.5	5.5	5.5	10	10	6	6	6
0230(11K)	M4	1.5	5.5-4	5.5-4	5.5	5.5	8	5.5	10	10	6	6	6
0300(15K)	M5	2.5	8-5	8-5	8	8	14	8	8	8	10	10	10
0380(18.5K)	M6	4.4	14-6	14-6	14	14	22	14	6	6	16	16	16
0440(22K)	M6	4.4	22-6	22-6	22	22	22	14	4	4	25	25	16

*1 The cable size is that of the HIV cable (600 V grade heat-resistant PVC insulated wire) etc. with continuous maximum permissible temperature of $75^{\circ} \mathrm{C}$. It assumes a surrounding air temperature of $50^{\circ} \mathrm{C}$ or lower and the wiring distance of 20 m or shorter.
*2 The cable size is that of the THHW cable with continuous maximum permissible temperature of $75^{\circ} \mathrm{C}$. It assumes a surrounding air temperature of $40^{\circ} \mathrm{C}$ or lower and the wiring distance of 20 m or shorter.
(For the use in the United States or Canada, refer to "Instructions for UL and cUL" in the document enclosed with the product.)
*3 The cable size is that of the PVC cable with continuous maximum permissible temperature of $70^{\circ} \mathrm{C}$. It assumes a surrounding air temperature of $40^{\circ} \mathrm{C}$ or lower and the wiring distance of 20 m or shorter. (Selection example mainly for use in Europe.)
*4 The screw size for terminals R/L1, S/L2, T/L3, U, V, W, PR, P/+, N/-, and P1, and the earthing (grounding) terminal is shown. The screw size for earthing (grounding) the FR-E820-0760(18.5K) or FR-E820-0900(22K) is indicated in parentheses.

The line voltage drop can be calculated by the following formula:
Line voltage drop $[\mathrm{V}]=\frac{\sqrt{3} \times \text { wire resistance }[\mathrm{m} \Omega / \mathrm{m}] \times \text { wiring distance }[\mathrm{m}] \times \text { current }[\mathrm{A}]}{1000}$
Use a larger diameter cable when the wiring distance is long or when it is desired to decrease the voltage drop (torque reduction) in the low speed range.

CAUTION

- Tighten the terminal screw to the specified torque.

A screw that has been tightened too loosely can cause a short circuit or malfunction.
A screw that has been tightened too tightly can cause a short circuit or malfunction due to the unit breakage.

- Use crimp terminals with insulation sleeves to wire the power supply and motor.

2.3.2 Total wiring length

- With induction motor

Connect one or more general-purpose motors within the total wiring length shown in the following table.

Cable type	Pr. 72 setting (carrier frequency)	Voltage class	0.1K	0.2K	0.4K	0.75K	1.5K	2.2K	3.7K or higher
Unshielded	1 (1 kHz) or lower	200 V	200 m	200 m	300 m	500 m	500 m	500 m	500 m
		400 V	-	-	200 m	200 m	300 m	500 m	500 m
	2 (2 kHz) or higher	200 V	30 m	100 m	200 m	300 m	500 m	500 m	500 m
		400 V	-	-	30 m	100 m	200 m	200 m	500 m
Shielded	$1(1 \mathrm{kHz})$ or lower	200 V	50 m	50 m	75 m	100 m	100 m	100 m	100 m
		400 V	-	-	50 m	50 m	75 m	100 m	100 m
	2 (2 kHz) or higher	200 V	10 m	25 m	50 m	75 m	100 m	100 m	100 m
		400 V	-	-	10 m	25 m	50 m	75 m	100 m

Total wiring length (FR-E820-0175(3.7K) or higher, FR-E840-0095(3.7K) or higher)

When driving a 400 V class motor by the inverter, surge voltages attributable to the wiring constants may occur at the motor terminals, deteriorating the insulation of the motor. In this case, take one of the following measure.

- Use a " 400 V class inverter-driven insulation-enhanced motor" and set Pr. 72 PWM frequency selection according to the wiring length.

Wiring length $\mathbf{5 0} \mathbf{~ m}$ or shorter	Wiring length $\mathbf{5 0}$ to $\mathbf{1 0 0} \mathbf{~ m}$	Wiring length longer than $\mathbf{1 0 0} \mathbf{~ m}$
14.5 kHz or lower	8 kHz or lower	2 kHz or lower

- With PM motor

Use the wiring length of 100 m or shorter when connecting a PM motor.
Use one PM motor for one inverter. Multiple PM motors cannot be connected to an inverter.
When the wiring length exceeds 50 m for a 400 V class motor driven by an inverter under PM sensorless vector control, set " 9 " (6 kHz) or less in Pr. 72 PWM frequency selection.

CAUTION

- Especially for long-distance wiring, the inverter may be affected by a charging current caused by stray capacitances of the wiring, leading to an activation of the overcurrent protection, malfunction of the fast-response current limit operation, or even to an inverter failure. It may also cause a malfunction or fault of the equipment connected ON the inverter output side. If the fast-response current limit function malfunctions, disable the function. (Refer to Pr. 156 Stall prevention operation selection in the FR-E800 Instruction Manual (Function).)
- A surge voltage suppression filter (FR-ASF-H/FR-BMF-H) can be used under V/F control and Advanced magnetic flux vector control.
- For the details of Pr. 72 PWM frequency selection, refer to the FR-E800 Instruction Manual (Function).
- Refer to Instruction Manual (Connection) to drive a 400 V class motor by an inverter.
- The carrier frequency is limited during Real sensorless vector control and PM sensorless vector control. (Refer to the FR-E800 Instruction Manual (Function).)

2.3.3 Earthing (grounding) precautions

Always earth (ground) the motor and inverter.

Purpose of earthing (grounding)

Generally, an electrical apparatus has an earth (ground) terminal, which must be connected to the ground before use.
An electrical circuit is usually insulated by an insulating material and encased. However, it is impossible to manufacture an insulating material that can shut off a leakage current completely, and actually, a slight current flows into the case. The purpose of earthing (grounding) the case of an electrical apparatus is to prevent operators from getting an electric shock from this leakage current when touching it.
To avoid the influence of external noises, the earthing (grounding) is important to EMI-sensitive equipment that handle low-level signals or operate very fast such as audio equipment, sensors, and computers.

Earthing (grounding) system to be established

As described previously, the purpose of earthing (grounding) is roughly classified into the electrical shock prevention and the prevention of malfunction due to the influence of electromagnetic noise. These two purposes should be clearly distinguished, and the appropriate earth (ground) system must be established to prevent the leakage current having the inverter's high frequency components from reversing through another earth (ground) point for malfunction prevention by following these instructions:

- Make the separate earth (ground) connection (I) for high frequency products such as the inverter from any other devices (EMI-sensitive devices described above) wherever possible.
Establishing adequate common (single-point) earth (ground) system (II) shown in the following figure is allowed only in cases where the separate earth (ground) system (I) is not feasible. Do not make inadequate common (single-point) earth (ground) connection (III).
As leakage currents containing many high frequency components flows into the earthing (grounding) cables of the inverter and peripheral devices (including a motor), the inverter must also be earthed (grounded) separately from EMIsensitive devices described above.
In a high building, it may be effective to use its iron structure frames as earthing (grounding) electrode for EMI prevention in order to separate from the earth (ground) system for electric shock prevention.
- Earthing (Grounding) must conform to the requirements of national and local safety regulations and electrical codes (NEC section 250, IEC 61140 class 1 and other applicable standards). A neutral-point earthed (grounded) power supply for 400 V class inverter in compliance with EN standard must be used.
- Use the thickest possible earthing (grounding) cable. The earthing (grounding) cable should be the size indicated in the table on page 17.
- The earthing (grounding) point should be as close as possible to the inverter, and the earth (ground) wire length should be as short as possible.
- Run the earthing (grounding) cable as far away as possible from the I/O wiring of the EMI-sensitive devices and run them in parallel in the minimum distance.

(III) Inadequate common (single-point) $\overline{\text { earthing (grounding): BaI }}$
- To be compliant with the EU Directive (Low Voltage Directive), refer to the document enclosed with the product.

2.4 Control circuit terminals

2.4.1 Terminal layout

Standard model (FM type inverter)

- Recommended cable gauge: 0.3 to $0.75 \mathrm{~mm}^{2}$

Standard model (AM type inverter)

- Recommended cable gauge: 0.3 to $0.75 \mathrm{~mm}^{2}$

Ethernet model

- Recommended cable gauge: 0.3 to $0.75 \mathrm{~mm}^{2}$

Safety communication model

- Recommended cable gauge: 0.3 to $0.75 \mathrm{~mm}^{2}$

2.4.2 Wiring method
- Power supply connection

For the control circuit wiring, strip off the sheath of a cable, and use it with a blade terminal. For a single wire, strip off the sheath of the wire and apply directly. Insert the blade terminal or the single wire into a socket of the terminal.
(1) Strip off the sheath for the below length. If the length of the sheath peeled is too long, a short circuit may occur with neighbouring wires. If the length is too short, wires might come off.
Wire the stripped cable after twisting it to prevent it from becoming loose. In addition, do not solder it.

Cable sheath stripping length

(2) Insert wires into a blade terminal, then crimp the terminal.

Insert wires to a blade terminal, and check that the wires come out for about 0 to 0.5 mm from a sleeve.
Check the condition of the blade terminal after crimping. Do not use a blade terminal of which the crimping is inappropriate, or the face is damaged.

- Blade terminals commercially available (as of May 2016)

Cable gauge ($\mathrm{mm}^{\mathbf{2}}$)	Blade terminal model		Manufacturer	Crimping tool name
	With insulation sleeve	Without insulation sleeve		
0.3	AI 0,34-10TQ	-	Phoenix Contact Co., Ltd.	CRIMPFOX 6
0.5	AI 0,5-10WH	-		
0.75	AI 0,75-10GY	A 0,75-10		
1	Al 1-10RD	A 1-10		
1.25, 1.5	Al 1,5-10BK	A 1,5-10		
0.75 (for two wires)	AI-TWIN 2×0,75-10GY	-		

Cable gauge (mm $\left.\mathbf{m}^{\mathbf{2}}\right)$	Blade terminal product number	Insulation product number	Manufacturer	Crimping tool product number
0.3 to 0.75	BT $0.75-11$	VC 0.75	NICHIFU Co.,Ltd.	NH 69

(3) Insert the wires into a socket.

When using a single wire or stranded wires without a blade terminal, push the open/close button all the way down with a flathead screwdriver, and insert the wire.

- Wire removal

Pull the wire while pushing the open/close button all the way down firmly with a flathead screwdriver.

CAUTION

- Pulling out the wire forcefully without pushing the open/close button all the way down may damage the terminal block.
- Use a small flathead screwdriver (tip thickness: $0.4 \mathrm{~mm} /$ tip width: 2.5 mm).

If a flathead screwdriver with a narrow tip is used, terminal block may be damaged.
Commercially available products (as of April 2019)

Name	Model	Manufacturer
Driver	SZF 0-0,4 x 2,5	Phoenix Contact Co., Ltd.

- Place the flathead screwdriver vertical to the open/close button. In case the blade tip slips, it may cause an inverter damage or injury.

2.4.3 Wiring precautions

- It is recommended to use the cables of 0.3 to $0.75 \mathrm{~mm}^{2}$ gauge for connection to the control circuit terminals.
- The wiring length should be 30 m (200 m for the terminal FM) maximum.
- Use two or more parallel micro-signal contacts or twin contacts to prevent a contact faults when using contact inputs since the control circuit input signals are microcurrents.
- To suppress EMI, use shielded or twisted cables for the control circuit terminals and run them away from the main and power circuits (including the 200V relay sequence circuit). For the cables connected to the control circuit terminals, connect their shields to the common terminal of the connected control circuit terminal. When connecting an external power supply to the terminal PC, however, connect the shield of the power supply cable to the negative side of the external power supply. Do not directly earth the shield to the enclosure, etc.
- Always apply a voltage to the alarm output terminals (A1, B1, C1, A2, B2, C2) via a relay coil, lamp, etc.
- When a relay coil is connected to the output terminals, use one with a surge absorbing function (reflux diode). When the voltage application direction is incorrect, the inverter will be damaged. Pay attention to the diode direction or other precautions to avoid incorrect wiring.

2.4.4 Control logic (sink/source) change (Standard model / Ethernet model)

The control logic of input signals can be switched as necessary for the standard model and the Ethernet model. To change the control logic, change the DIP switch position on the control circuit board.
The initial setting of the control logic differs depending on the specification.
(The output signals may be used in either the sink or source logic independently of the switch setting.)

- Standard model

- Ethernet model

R1 $+(4)$

CAUTION

- Never change the control logic while power is ON.

2.5 Safety stop function

2.5.1 Function description

The terminals related to the safety stop function are shown below.

Terminal symbol	Terminal function description	
S1 $^{* 1}$	Input terminal as the safety stop channel 1.	Status of both the circuit between terminals S1 and PC and the circuit between terminals S2 and PC Open: Safety stop is activated. Shorted: Safety stop is not activated
S2 $^{* 1}$	Input terminal as the safety stop channel 2.	
PC *1	Common terminal for S1 and S2.	OFF: SO
Ontput terminal used for fault detection and fault		
indication display. The terminal is ON (conducted) while no internal safety safety circuit failure *2 circuit failure ${ }^{* 2}$ exists.	No internal safety circuit failure *2	
SOC	Open collector output (terminal SO) common	

*1 In the initial status, terminals S1 and PC and terminals S2 and PC are respectively shorted with shorting wires. To use the safety stop function, remove all the shorting wires, and then connect to the safety relay module as shown in the connection diagram.
*2 When any fault listed on the next page occurs in the internal safety circuit, the corresponding indication is shown on the operation panel.

CAUTION

- Use the terminal SO to output a fault and to prevent restarting of the inverter. The signal cannot be used as safety stop input signal to other devices.

2.5.2 Connection diagram

To prevent automatic restart after a fault occurrence, connect the reset button of a safety relay module or a safety programmable controller across the terminals SO and SOC. The reset button acts as the feedback input for the safety relay module or the safety programmable controller.

[^2]
2.5.3 Safety stop function operation

Input power	Internal safety circuit status	Input terminal *1, *2		Output terminal	Output signal *8, *9, *10		Inverter operation enable signal	Operation panel indication	
		S1	S2	SO	SAFE	SAFE2		E.SAF *6	SA *7
OFF	-	-	-	OFF	OFF	OFF	Output shutoff (Safe state)	Not displayed	Not displayed
ON	Normal	ON	ON	ON *3	OFF	ON *3	Operation enabled	Not displayed	Not displayed
	Normal	ON	OFF	OFF *4	OFF *4	OFF *4	Output shutoff (Safe state)	Displayed	Displayed
	Normal	OFF	ON	OFF *4	OFF *4	OFF *4	Output shutoff (Safe state)	Displayed	Displayed
	Normal	OFF	OFF	ON *3	ON *3	ON *3	Output shutoff (Safe state)	Not displayed	Displayed
	Fault	ON	ON	OFF	OFF	OFF	Output shutoff (Safe state)	Displayed	Not displayed *5
	Fault	ON	OFF	OFF	OFF	OFF	Output shutoff (Safe state)	Displayed	Displayed
	Fault	OFF	ON	OFF	OFF	OFF	Output shutoff (Safe state)	Displayed	Displayed
	Fault	OFF	OFF	OFF	OFF	OFF	Output shutoff (Safe state)	Displayed	Displayed

*1 The terminal ON state shows that the terminal is conducted (the line is closed), and the OFF state shows that the terminal is not conducted (the line is open).
*2 When not using the safety stop function, short across terminals S1 and PC and terminals S2 and PC to use the inverter. (In the initial status, terminals S1 and PC and terminals S2 and PC are respectively shorted with shorting wires.)
*3 If any of the faults shown in the following table occurs, terminal SO, the SAFE signal, and the SAFE2 signal are turned OFF.

Error Definition	Operation panel indication
Option fault	E.OPT
Communication option fault	E.OP1
Parameter storage device fault (control circuit board)	E.PE
Retry count excess	E.RET
Parameter storage device fault (main circuit board)	E.PE2
Safety circuit fault	E.SAF
Overspeed occurrence	E.OS
Speed deviation excess detection	E.OSD

Error Definition	Operation panel indication
Signal loss detection	E.ECT
Excessive position fault	E.OD
Brake sequence fault	E.MB1 to E.MB7
Acceleration error	E.OA
CPU fault	E.CPU
	E. 5 to E. 7
Internal circuit fault	E. 13

*4 When the internal safety circuit is operated normally (no fault occurs), terminal SO, the SAFE signal, and the SAFE2 signal remain ON until "E.SAF" is displayed. Terminal SO, the SAFE signal, and the SAFE2 signal are turned OFF when "E.SAF" is displayed.
*5 "SA" is displayed when terminals S1 and S2 are identified as OFF due to the internal safety circuit failure.
*6 If another fault occurs when the fault E.SAF occurs, the other fault indication may be displayed.
*7 If another warning occurs when the warning SA occurs, the other warning indication may be displayed.
*8 The ON/OFF state of the output signal is the one for the positive logic. In negative logic, the signal status is opposite.
*9 To assign the functions of the SAFE signal and SAFE2 signal to output terminals, set values shown in the following table in any two parameters from Pr. 190 to Pr. 196 (Output terminal function selection).

Output signal	Pr. 190 to Pr. 196 setting	
	Positive logic	Negative logic
SAFE	80	180
SAFE2	81	181

*10 The use of the SAFE signal and SAFE2 signal has not been certified for compliance with safety standards.
For details, refer to the FR-E800 Instruction Manual (Functional Safety).

2.5.4 Safety communication function (Safety communication model)

This function is not available for the standard model and the Ethernet model.

- Outline

Mitsubishi Electric FR-E800-SCE general-purpose inverters have safety functions to stop the output to motors.
By connecting the inverter with a programmable controller with an Ethernet cable, signal input via communication is enabled.
Wiring
The following describes terminals related to safety monitoring functions.

Terminal symbol	Terminal function description
SX1	Terminal functions can be selected using Pr.S051 SX1/SX2 terminal function selection.
SX2	Terminal functions can be selected using Pr.S055 SY1/SY2 terminal function selection.
SY1	Connect this terminal to the power supply common terminal of a transistor output (open collector output) device, such as a programmable controller, in the source logic to avoid malfunction by undesirable current.
SY2	Common terminal for the 24 VDC power supply (terminal PC). Isolated from terminal 5.
SD	Common terminal for SX1 and SX2.
	Can be used as a 24 VDC 0.1 A power supply.
PC	Common terminal for SY1 and SY2.
SC1	SC2

- Connection diagram.

*1 To avoid an electric shock hazard, install a magnetic contactor (MC) at the input side of the inverter.

- Operation of the SAFE and SAFE2 signals

E.SAF indication *3	Status of safety related parts	STO function status when the STO or SS1 command is input	Inverter operating status	SA indication*4	Output signal *5, *6, *7	
					SAFE	SAFE2
Not displayed	Normal	STO disabled	Operation enabled	Not displayed	OFF	ON* ${ }^{*}$
		STO disabled ${ }^{*}$	Output shutoff (Safe state)	Displayed	ON* ${ }^{\text {* }}$	ON^{*}
Displayed	Fault	-	Output shutoff (Safe state)	Not displayed	OFF	OFF

*1 If any of the faults shown in the following table occurs, the SAFE signal and the SAFE2 signal are turned OFF.

Fault type	Operation panel indication
Option Fault	E.OPT
Communication option error	E.OP1
Parameter storage device fault (control circuit board)	E.PE
Retry count excess	E.RET
Parameter storage device fault (main circuit board)	E.PE2
Safety circuit fault	E.SAF
Overspeed occurrence	E.OS
Speed deviation excess detection	E.OSD

Fault type	Operation panel indication
Signal loss detection	E.ECT
Excessive position fault	E.OD
Brake sequence fault	E.MB1 to E.MB7
	E.OA
CPU fault	E.CPU
	E. 5 to E.7
Internal circuit fault	E. 13

*2 When safety communication functions are enabled (Pr.S002 \neq " 0 "), the STO function is enabled while the safety communication is not established.
*3 If another fault occurs when the fault E.SAF occurs, the other fault indication may be displayed.
*4 If another warning occurs when the warning SA occurs, the other warning indication may be displayed.
*5 The ON/OFF state of the output signal is the one for the positive logic. In negative logic, the signal status is opposite.
*6 To assign the functions of the SAFE signal and SAFE2 signal to output terminals, set either value shown in the following table in Pr. 192 ABC terminal function selection. To output the signal via communication, the function can be assigned also to Pr. 190 to Pr. 196 (Output terminal function selection) using communication protocols. For details, refer to the Instruction Manual (Communication) or the Instruction Manual of each communication option.

Output signal	Pr. 190 to Pr. 196 setting	
	Positive logic	Negative logic
SAFE	80	180
SAFE2	81	181

*7 The use of the SAFE signal and SAFE2 signal has not been certified for compliance with safety standards.

For details, refer to the FR-E800-SCE Instruction Manual (Functional Safety).

3 FAILSAFE OF THE SYSTEM WHICH USES THE INVERTER

When a fault is detected by the protective function, the protective function activates and outputs the Fault signal. However, the Fault signal may not be output at an inverter's fault occurrence when the detection circuit or output circuit fails, etc. Although Mitsubishi assures the best quality products, provide an interlock which uses inverter status output signals to prevent accidents such as damage to the machine when the inverter fails for some reason. Also at the same time consider the system configuration where a failsafe from outside the inverter, without using the inverter, is enabled even if the inverter fails.

Interlock method which uses the inverter status output signals

By combining the inverter output signals to provide an interlock as shown below, an inverter failure can be detected. (For details of each signal, refer to the FR-E800 Instruction Manual (Function).)

No.	Interlock method	Check method	Used signals
a	Inverter protective function operation	Operation check of an alarm contact. Circuit error detection by negative logic.	Fault (ALM) signal
b	Inverter operating status	Operation ready signal check.	Inverter operation ready (RY) signal
c	Inverter running status	Logic check of the start signal and running signal.	Start (STF or STR) signal Inverter running (RUN) signal
d	Inverter running status *1	Logic check of the start signal and output current.	Start (STF or STR) signal Output current detection (Y12) signal

*1 This interlock method cannot be used when a PM motor is used.

- When using various signals, assign the functions to Pr. 190 to Pr. 196 (Output terminal function selection) referring to the following table.

Output signal	Pr. 190 to Pr. 196 settings	
	Positive logic	Negative logic
ALM	99	199
RY	11	111
RUN	0	100
Y12	12	112

CAUTION

- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.

Checking by using the Fault signal output from the inverter... (a)

When the inverter's protective function is activated and the inverter output is stopped, the Fault (ALM) signal is output. (The ALM signal is assigned to terminals A, B, and C in the initial setting). With this signal, check that the inverter operates properly. In addition, negative logic can be set. (ON when the inverter is normal, OFF when the fault occurs.)

Checking the inverter operating status by using the Inverter operation ready signal output from the inverter ... (b)
The Inverter operation ready (RY) signal is output when the inverter power is ON and the inverter becomes operative. Check if the RY signal is output after powering ON the inverter.

Checking the inverter operating status by using the start signal input to the inverter and the Inverter running signal output from the inverter ... (c)
The Inverter running (RUN2) signal is output when the inverter is running. Check if the RUN2 signal is output while a start signal (the STF/STR signal for forward/reverse rotation command) is input to the inverter. Even after the start signal is turned OFF, the RUN2 signal is kept output until the inverter makes the motor to decelerate and to stop. For the logic check, configure a sequence considering the inverter's deceleration time.

Checking the motor operating status by using the start signal input to the inverter and the Output current detection signal output from the inverter ... (d)
This interlock method cannot be used when a PM motor is used.
The Output current detection (Y12) signal is output when the inverter operates and currents flows into the motor.
Check if the Y12 signal is output while a start signal (the STF/STR signal for forward/reverse rotation command) is input to the inverter. The Y12 signal is initially set to be output at 150% inverter rated current. Adjust the level to around 20% using no load current of the motor as reference with Pr. 150 Output current detection level.
Like the Inverter running (RUN) signal, even after the start signal is turned OFF, the Y12 signal is kept output until the inverter stops the output to a decelerating motor. For the logic check, configure a sequence considering the inverter's deceleration time.

Backup method which does not use the inverter

Even if the interlock is provided by the inverter status signal, enough failsafe is not ensured depending on the failure status of the inverter itself. For example, if an inverter CPU fails in a system interlocked with the inverter's Fault, start, and RUN signals, no Fault signals will be output and the RUN signal will be kept ON because the inverter CPU is down.
Provide a speed detector to detect the motor speed and current detector to detect the motor current, and consider the backup system such as performing a check as follows according to the level of importance of the system.

Start signal and actual operation check

Check the motor running and motor current while the start signal is input to the inverter by comparing the start signal to the inverter and detected speed of the speed detector or detected current of the current detector. Note that the current is flowing through the motor while the motor coasts to stop, even after the inverter's start signal is turned OFF. For the logic check, configure a sequence considering the inverter's deceleration time. In addition, it is recommended to check the three-phase current when using the current detector.

Command speed and actual operation check

Check for a gap between the actual speed and commanded speed by comparing the inverter's speed command and the speed detected by the speed detector.

4 PRECAUTIONS FOR USE OF THE INVERTER

The FR-E800 series inverter is a highly reliable product, but incorrect peripheral circuit making or operation/handling method may shorten the product life or damage the product. Before starting operation, always recheck the following points.

Checkpoint	Countermeasure
Crimp terminals are insulated.	Use crimp terminals with insulation sleeves to wire the power supply and the motor.
The wiring between the power supply (terminals R/L1, S/L2, T/ L3) and the motor (terminals U, V, W) is correct.	Application of power to the output terminals ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) of the inverter will damage the inverter. Never perform such wiring.
No wire offcuts are left from the time of wiring.	Wire offcuts can cause a fault, failure, or malfunction. Always keep the inverter clean. When drilling mounting holes in an enclosure etc., take caution not to allow chips and other foreign matter to enter the inverter.
The main circuit cable gauge is correctly selected.	Use an appropriate cable gauge to suppress the voltage drop to 2% or less. If the wiring distance is long between the inverter and motor, a voltage drop in the main circuit will cause the motor torque to decrease especially during the output of a low frequency.
The total wiring length is within the specified length.	Keep the total wiring length within the specified length. In long distance wiring, charging currents due to stray capacitance in the wiring may degrade the fast-response current limit operation or cause the equipment on the inverter's output side to malfunction. Pay attention to the total wiring length.
Countermeasures are taken against EMI.	The input/output (main circuit) of the inverter includes high frequency components, which may interfere with the communication devices (such as AM radios) used near the inverter. Connect radio noise filters or EMC filters on the input side of the inverter to minimize interference.
On the inverter's output side, there is no power factor correction capacitor, surge suppressor, or radio noise filter installed.	Doing so will shut off the inverter output or damage the capacitor or surge suppressor. If any of the above devices is connected, immediately remove it.
When performing an inspection or rewiring on the product that has been energized, the operator has waited long enough after shutting off the power supply.	For a short time after the power-OFF, a high voltage remains in the smoothing capacitor, and it is dangerous. Before performing an inspection or rewiring, wait 10 minutes or longer after the power supply turns OFF, then confirm that the voltage across the main circuit terminals $\mathrm{P} /+$ and $\mathrm{N} /$ - of the inverter is low enough using a digital multimeter, etc.
The inverter's output side has no short circuit or ground fault occurring.	A short circuit or ground fault on the inverter's output side may damage the inverter module. Fully check the insulation resistance of the circuit prior to inverter operation since repeated short circuits caused by peripheral circuit inadequacy or an earth (ground) fault caused by wiring inadequacy or reduced motor insulation resistance may damage the inverter module. Fully check the to-earth (ground) insulation and phase-to-phase insulation of the inverter's output side before power-ON. Especially for an old motor or use in hostile atmosphere, securely check the motor insulation resistance, etc.
The circuit is not configured to use the inverter's input-side magnetic contactor to start/stop the inverter frequently.	Since repeated inrush currents at power ON will shorten the life of the converter circuit, frequent starts and stops of the magnetic contactor must be avoided. Turn ON or OFF the inverter's start (STF/STR) signal to run or stop the inverter.
A mechanical brake is not connected to terminals P/+ and PR.	To terminals P/+ and PR, connect only an external brake
The voltage applied to the inverter I/O signal circuits is within the specifications.	Application of a voltage higher than the permissible voltage to the inverter I/O signal circuits or opposite polarity may damage the I/O devices.
When using the electronic bypass operation, electrical and mechanical interlocks are provided between the electronic bypass contactors MC1 and MC2.	When using a switching circuit as shown below, chattering due to misconfigured sequence or arc generated at switching may allow undesirable current to flow in and damage the inverter. Miswiring may also damage the inverter. (Note that a PM motor cannot be driven by the commercial power supply.) If switching to the commercial power supply operation while a failure such as an output short circuit has occurred between the magnetic contactor MC2 and the motor, the damage may further spread. If a failure has occurred between the MC2 and the motor, a protection circuit such as using the OH signal input must be provided.
A countermeasure is provided for power restoration after a power failure.	If the machine must not be restarted when power is restored after a power failure, provide an MC on the inverter's input side and also make up a sequence which will not switch ON the start signal. If the start signal (start switch) remains ON after a power failure, the inverter will automatically restart as soon as the power is restored.
For Vector control, the encoder is properly installed.	The encoder must be directly connected to a motor shaft without any backlash. (Real sensorless vector control or PM sensorless vector control does not require an encoder.)

Checkpoint	Countermeasure
A magnetic contactor (MC) is installed on the inverter's input side.	On the inverter's input side, connect an MC for the following purposes: To disconnect the inverter from the power supply at activation of a protective function or at malfunctioning of the driving system (emergency stop, etc.). To prevent any accident due to an automatic restart at power restoration after an inverter stop made by a power failure. To separate the inverter from the power supply to ensure safe maintenance and inspection work. To use an MC to perform an emergency stop during operation, select the MC conforming to JEM 1038-AC-3 rated current for the inverter rated input current.
The magnetic contactor on the inverter's output side is properly handled.	Switch the magnetic contactor between the inverter and motor only when both the inverter and motor are at a stop.
When using a PM motor, a lowvoltage manual contactor is installed on the inverter's output side.	A PM motor is a synchronous motor with high-performance magnets embedded inside. High-voltage is generated at the motor terminals while the motor is running even after the inverter power is turned OFF. In an application, such as fan and blower, where the motor is driven by the load, a low-voltage manual contactor must be connected on the inverter's output side, and wiring and inspection must be performed while the contactor is open. Otherwise you may get an electric shock.
An EMI countermeasure is provided for the frequency setting signals.	If electromagnetic noise generated from the inverter causes the frequency setting signal to fluctuate and the motor rotation speed to be unstable when changing the motor speed with analog signals, the following countermeasures are effective: Do not run the signal cables and power cables (inverter l/O cables) in parallel with each other and do not bundle them. Run the signal cables as far away as possible from the power cables (inverter l/O cables). Use shielded cables. Install a data line filter to signal cable (example: ZCAT3035-1330 by TDK).
A countermeasure is provided for an overload operation.	When performing frequent starts/stops by the inverter, rise/fall in the temperature of the transistor element of the inverter will repeat due to a repeated flow of large current, shortening the life from thermal fatigue. Since thermal fatigue is related to the amount of current, the life can be increased by reducing current at locked condition, starting current, etc. Reducing current may extend the service life but may also cause torque shortage, which leads to a start failure. Adding a margin to the current can eliminate such a condition. For an induction motor, use an inverter of a higher capacity (up to two ranks). For a PM motor, use an inverter and PM motor of higher capacities.
The specifications and rating match the system requirements.	Make sure that the specifications and rating match the system requirements.
Countermeasures are taken against electrical corrosion on the motor bearing.	When a motor is driven by the inverter, axial voltage is generated on the motor shaft, which may cause electrical corrosion of the bearing in rare cases depending on the wiring, load, operating conditions of the motor or specific inverter settings (high carrier frequency). Contact your sales representative to take appropriate countermeasures for the motor. The following shows examples of countermeasures for the inverter. Decrease the carrier frequency. Provide a common mode choke ${ }^{* 1}$ on the output side of the inverter.

*1 Recommended common mode choke: FT-3KM F series FINEMET® common mode choke cores manufactured by Hitachi Metals, Ltd. FINEMET is a registered trademark of Hitachi Metals, Ltd.

5 BASIC OPERATION

This chapter explains the basic operation of this product.
Always read the instructions before use.

5.1 Operation panel

5.1.1 Components of the operation panel

Standard mode

The operation panel cannot be removed from the inverter.

No.	Component	Name	Description
(1)	00.8080	Monitor (4-digit LED)	Shows a numeric value (readout) of a monitor item such as the frequency or a parameter number. (The monitor item can be changed according to the settings of Pr.52, Pr. 774 to Pr.776.)
(2)	$\begin{gathered} \mathrm{Hz} \\ \mathbf{A} \end{gathered}$	Unit indication	$\mathrm{Hz}:$ ON when the actual frequency is monitored. (Blinks when the set frequency is monitored.) $\mathrm{A}:$ ON when the current is monitored. (Both "Hz" and "A" are OFF to (requency or the current.) for icate a value other than the
3	$=\mathrm{PU}$ $=\mathrm{EXT}$ NET	Inverter operation mode LED indicator	PU: ON when the inverter is in the PU operation mode. EXT: ON when the inverter is in the External operation mode. ON when the inverter in the initial setting is powered ON.) NET: ON when the inverter is in the Network operation mode. PU and EXT: ON when the inverter is in the External/PU combined operation mode 1 or 2 .
4	$\begin{aligned} & =\text { MON } \\ & =\text { PRM } \end{aligned}$	Operation panel mode LED indicator	MON: ON or blinks only when the first, second, or third monitor is displayed. PRM: ON when the operation panel is in the parameter setting mode. The indicator blinks when the inverter is in the easy setting mode.
5	- RUN	Operating status indicator	ON or blinks during inverter running. ON: During forward rotation operation. Blinks slowly (1.4 -second cycle): During reverse rotation operation. Blinks quickly (0.2 -second cycle): Operation is disabled although the start command is given. ${ }^{*}$
6	PM	Controlled motor type LED indicator	ON when the inverter is set to control the PM motor. The indicator blinks during test operation. The indicator is OFF when the inverter controls the induction motor.
(1)	PRUN	PLC function LED indicator	ON when the PLC function of the inverter is valid.
8		Setting dial	The setting dial of the Mitsubishi Electric inverters. Turn the setting dial to change the setting of frequency or parameter, etc. Press the setting dial to perform the following operations: - To display a set frequency on the LED display in the monitor mode. (The monitor item shown on the display can be changed by using Pr.992.) - To display the present setting during calibration.
9	$\frac{\text { PU }}{\text { EXT }}$	PU/EXT key	Switches between the PU operation mode, the PUJOG operation mode, and the External operation mode. The easy setting of the inverter operation mode is enabled by pressing this key simultaneously with the MODE key. Also cancels the PU stop warning.
(1)	MODE	MODE key	Switches the operation panel to a different mode. The easy setting of the inverter operation mode is enabled by pressing this key simultaneously with the PU/EXT key. Every key on the operation panel becomes inoperable by holding this key for 2 seconds. The key inoperable function is invalid when Pr. $161=$ " 0 (initial setting)". (refer to Instruction Manual (Function))

No.	Component	Name	Description
(11)	SET	SET key	Confirms each selection. When this key is pressed during inverter operation, the monitor item changes. (The monitor item on each screen can be changed according to the settings of Pr.52, Pr. 774 to Pr.776.).
(12)	RUN	RUN key	Start command The direction of motor rotation depends on the Pr. 40 setting.
${ }^{13}$	STOP	STOP/RESET key	Stops the operation commands. Used to reset the inverter when the protective function is activated.
(14)	\&	USB connector	FR Configurator2 is available by USB connection.

*1 Situations such as when the MRS/X10 signal is input, during the automatic restart after instantaneous power failure, after auto tuning is complete, when "SE" (incorrect parameter setting) alarm occurs.

Ethernet model and safety communication model

The operation panel cannot be removed from the inverter.

No.	Component	Name	Description
(1)		Monitor (4-digit LED)	Shows a numeric value (readout) of a monitor item such as the frequency or a parameter number. (The monitor item can be changed according to the settings of Pr.52, Pr. 774 to Pr.776.)
(2)	Hz A	Unit indication	$\mathrm{Hz}: \quad$ ON when the actual frequency is monitored. (Blinks when the set frequency is monitored.) A: ON when the current is monitored. (Both "Hz" and "A" are OFF to indicate a value other than the frequency or the current.)
(3)	FPU $=$ EXT $=$ NET	Inverter operation mode LED indicator	PU: ON when the inverter is in the PU operation mode. EXT: ON when the inverter is in the External operation mode. (ON when the inverter in the initial setting is powered ON.) NET: ON when the inverter is in the Network operation mode. PU and EXT: ON when the inverter is in the External/PU combined operation mode 1 or 2.
(4)	$\begin{aligned} & =\text { MON } \\ & =\text { PRM } \end{aligned}$	Operation panel mode LED indicator	MON: ON or blinks only when the first, second, or third monitor is displayed. PRM: ON when the operation panel is in the parameter setting mode. The indicator blinks when the inverter is in the easy setting mode.
(5)	RUN	Operating status indicator	ON or blinks during inverter running. ON: During forward rotation operation. Blinks slowly (1.4-second cycle): During reverse rotation operation. Blinks quickly (0.2 -second cycle): Operation is disabled although the start command is given. ${ }^{* 1}$
6	- PM	Controlled motor type LED indicator	ON when the inverter is set to control the PM motor. The indicator blinks during test operation. The indicator is OFF when the inverter controls the induction motor.
7	P.RUN	PLC function LED indicator	ON when the PLC function of the inverter is valid.
8	$=\mathrm{NS}$ $=\mathrm{MS}$ $=$ LINK1 $=$ LINK2	Ethernet communication status	Indicates the Ethernet communication status. For details, refer to the Instruction Manual (Communication).
(9)	PU	PU/EXT key	Switches between the PU operation mode, the PUJOG operation mode, and the External operation mode. The easy setting of the inverter operation mode is enabled by pressing this key simultaneously with the MODE key. Also cancels the PU stop warning.

No.	Component	Name	Description
(10)	MODE	MODE key	Switches the operation panel to a different mode. The easy setting of the inverter operation mode is enabled by pressing this key simultaneously with the PU/EXT key. Every key on the operation panel becomes inoperable by holding this key for 2 seconds. The key inoperable function is invalid when Pr. 161 = "0 (initial setting)". (refer to Instruction Manual (Function))
(11)	SET	SET key	Confirms each selection. When this key is pressed during inverter operation, the monitor item changes. (The monitor item on each screen can be changed according to the settings of Pr.52, Pr. 774 to Pr.776.).
(12)	RUN	RUN key	Start command The direction of motor rotation depends on the Pr. 40 setting.
13	\| STOP	STOP/RESET key	Stops the operation commands. Used to reset the inverter when the protective function is activated.
(14)	$\uparrow \downarrow$	UP/DOWN key	Used to change the setting of frequency or parameter.
(15)	¢	USB connector	FR Configurator2 is available by USB connection.

*1 Situations such as when the MRS/X10 signal is input, during the automatic restart after instantaneous power failure, after auto tuning is complete, when "SE" (incorrect parameter setting) alarm occurs.

5.1.2 Basic operation of the operation panel

Basic operation (standard model)

*1 For the details of operation modes, refer to Instruction Manual (Function)
*2 The monitor item can be changed. refer to Instruction Manual (Function)
*3 Not displayed for the 575 V class.
*4 For the details of the fault history, refer to the Instruction Manual (Maintenance).

Basic operation (Ethernet model and safety communication model)

*1 For the details of operation modes, refer to Instruction Manual (Function).
*2 The monitor item can be changed. refer to Instruction Manual (Function).
*3 Not displayed for the 575 V class.
${ }^{*} 4$ For the details of the fault history, refer to the Instruction Manual (Maintenance).

6 PARAMETER LIST

For simple variable-speed operation of the inverter, the initial values of the parameters may be used as they are. Set the necessary parameters to meet the load and operational specifications. Parameter's setting, change and check can be made on the operation panel.

CAUTION

- Simple indicates simple mode parameters. Use Pr. 160 User group read selection to indicate the simple mode parameters only (initial setting is to indicate the extended mode parameters).
- The changing of the parameter settings may be restricted in some operating statuses. Use Pr. 77 Parameter write selection to change the setting of the restriction.
- Refer to FR-E800 Function Manual for instruction codes for communication and availability of parameter copy, Parameter clear, and all clear.

Notation
[E800]: Available for the standard model.
[E800-1]: Available for the FM type inverter (standard model).
[E800-4]: Available for the AM $(50 \mathrm{~Hz})$ type inverter (standard model).
[E800-5]: Available for the AM $(60 \mathrm{~Hz})$ type inverter (standard model).
[E800(-E)]: Available for the standard and Ethernet models.
[E800-(SC)E]: Available for the Ethernet model and the safety communication model.
[E800-SCE]: Available for the safety communication model.
[E800-(SC)EPA]: Available for the Protocol group A (Ethernet model / safety communication model).
[E800-(SC)EPB]: Available for the Protocol group B (Ethernet model / safety communication model).
[200/400 V class]: Available for the 200/400 V class inverters.
[575 V class]: Available for the 575 V class inverters.
[3-phase]: Available for the three-phase power input model.

Parameter 0 to 99

Parameter	Name	Setting Range	Initial Value *1	Parameter	Name	Setting Range	Initial Value *1
21	Acceleration/ deceleration time increments	0, 1	0	52	Operation panel main monitor selection	[E800][E800-(SC)EPB]0,5 to 14,17 to20,23 to 33,35,38,40 to 42,44,45,50 to 57,61,$62,64,65,67$,$91,97,100$$[E 800-(S C) E P A]$0,5 to 14,17 to20,23 to 33,35,38,40 to 42,44,45,50 to 57,61,$62,64,65,67$,$83,91,97,100$	0
22	Stall prevention operation level (Torque limit level)	0\% to 400\%	150\%				
23	Stall prevention operation level compensation factor at double speed	$\begin{aligned} & 0 \% \text { to } 200 \% \text {, } \\ & 9999 \end{aligned}$	9999				
$\begin{gathered} 24 \text { to } \\ 27 \end{gathered}$	Multi-speed setting (speed 4 to speed 7)	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999				
29	Acceleration/ deceleration pattern selection	0 to 2	0	53	Frequency / rotation speed unit switchover	0, 1, 4	0
30	Regenerative function selection	0 to 2	0	54	FM terminal function selection [E800-1]	1 to 3,5 to 14 , 17, 18, 21, 24, 32, 33, 50, 52, 53, 61, 62, 65, 67, 70, 97	1
31	Frequency jump 1A	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999				
32	Frequency jump 1B	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999	$55^{*} 6$	Frequency monitoring reference	0 to 590 Hz	Gr.1: 60 Hz Gr.2: 50 Hz
33	Frequency jump 2A	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999	$56 * 6$	Current monitoring reference	0 to 500 A	Inverter rated current
34	Frequency jump 2B	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999				
35	Frequency jump 3A	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999	57	Restart coasting time	$\begin{aligned} & 0,0.1 \text { to } 30 \mathrm{~s}, \\ & 9999 \end{aligned}$	9999
				58	Restart cushion time	0 to 60 s	1 s
36	Frequency jump 3B	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999	59	Remote function selection	0 to 3, 11 to 13	0
37^{*}	Speed display	0.01 to 9998	1800	60	Energy saving control selection	0,9	0
40	RUN key rotation direction selection	0, 1	0				
41	Up-to-frequency sensitivity	0\% to 100\%	10\%	61	Reference current	0 to 500 A, 9999	9999
42	Output frequency detection	0 to 590 Hz	6 Hz	62	Reference value at acceleration	$\begin{aligned} & 0 \% \text { to } 400 \% \text {, } \\ & 9999 \end{aligned}$	9999
43	Output frequency detection for reverse rotation	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999	63	Reference value at deceleration	$\begin{aligned} & 0 \% \text { to } 400 \% \text {, } \\ & 9999 \end{aligned}$	9999
				65	Retry selection	0 to 5	0
$44^{* 3}$	Second acceleration/ deceleration time	0 to 3600 s	$5 \mathrm{~s}^{*}$	66	Stall prevention operation reduction starting frequency	0 to 590 Hz	Gr.1: 60 Hz Gr.2: 50 Hz
			$10 \mathrm{~s}^{*}$				
			$15 \mathrm{~s}{ }^{*}$				
$45^{*} 3$	Second deceleration time	$\begin{aligned} & 0 \text { to } 3600 \mathrm{~s} \text {, } \\ & 9999 \end{aligned}$	9999	67	Number of retries at fault occurrence	$\begin{aligned} & 0 \text { to } 10,101 \text { to } \\ & 110 \end{aligned}$	0
46	Second torque boost	$\begin{aligned} & 0 \% \text { to } 30 \% \text {, } \\ & 9999 \end{aligned}$	9999	68	Retry waiting time Retry count display erase	0.1 to 600 s	1 s
				69		0	0
47	Second V/F (base frequency)	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	9999				
48	Second stall prevention operation level	$\begin{aligned} & 0 \% \text { to } 400 \% \text {, } \\ & 9999 \end{aligned}$	9999	70	Special regenerative brake duty	0\% to 100\%	0\%
				71	Applied motor	[200/400 V class] 0, 3, 5, 6, 10, $13,15,16,20$, 23, 30, 33, 40, 43, 50, 53, 70, 73, 1800, 1803, 8090, 8093, 9090, 9093 [575 V class] $0,3,5,6,10$, $13,15,16,30$, 33, 8090, 8093, 9090, 9093	0
51	Second electronic thermal O/L relay Rated second motor current	0 to 500 A, 9999	9999				
				72	PWM frequency selection	0 to 15	1
				73	Analog input selection	$\begin{aligned} & 0,1,6,10 \\ & 11,16 \end{aligned}$	1

Parameter	Name	Setting Range	Initial Value *1	Parameter	Name	Setting Range	Initial Value ${ }^{* 1}$
74	Input filter time constant	0 to 8	1	119	PU communication stop bit length / data	0, 1, 10, 11	1
75	Reset selection/ disconnected PU detection/PU stop selection	$[$ [E800(-E)] 0 to 3, 14 to 17 $[E 800-S C E]$ 0 to 3, 14 to 17, 10000 to 10003, 10014 to 10017	$\begin{gathered} {[\mathrm{E} 800(-\mathrm{E})]} \\ 14 \\ {[\mathrm{E} 800-\mathrm{SCE}]} \\ 10014 \end{gathered}$		length [E800] PU communication data length [E800]	0,1	0
					PU communication stop bit length [E800]	0,1	1
	Reset selection	0, 1	0	120	PU communication parity check [E800]	0 to 2	2
	Disconnected PU detection [E800]						
	detection [E800]		1	121	PU communication retry count [E800]	0 to 10, 9999	1
	$\begin{array}{\|l\|} \text { Reset limit } \\ \text { [E800-SCE] } \end{array}$	$\begin{aligned} & \text { 0, 10 } \\ & {[\text { EE800-SCE] }} \end{aligned}$	$\begin{gathered} {[\mathrm{E} 800(-\mathrm{E})]} \\ 0 \\ {[\mathrm{E} 800-\mathrm{SCE}]} \\ 10 \end{gathered}$	122	PU communication check time interval [E800]	$\begin{aligned} & 0,0.1 \text { to } 999.8 \mathrm{~s}, \\ & 9999 \end{aligned}$	0
77	Parameter write selection	0 to 2	10	123	PU communication waiting time setting [E800]	$\begin{aligned} & 0 \text { to } 150 \mathrm{~ms}, \\ & 9999 \end{aligned}$	9999
78	Reverse rotation prevention selection	0 to 2	0	124	PU communication CR/LF selection [E800]	0 to 2	1
79	Operation mode selectionSimple	0 to 4, 6, 7	0				
				125	Terminal 2 frequency setting gain frequencysimple	0 to 590 Hz	$\left\|\begin{array}{l} \mathrm{Gr} .1: 60 \mathrm{~Hz} \\ \mathrm{Gr} .2: 50 \mathrm{~Hz} \end{array}\right\|$
80	Motor capacity	$\begin{array}{\|l\|} \hline 0.1 \text { to } 30 \mathrm{~kW}, \\ 9999 \\ \hline \end{array}$	9999				
81	Number of motor poles	$\begin{aligned} & 2,4,6,8,10, \\ & 12,9999 \end{aligned}$	9999	126	Terminal 4 frequency setting gain frequency Simple	0 to 590 Hz	$\begin{aligned} & \mathrm{Gr} .1: 60 \mathrm{~Hz} \\ & \mathrm{Gr}) \end{aligned}$
82	Motor excitation	0 to $500 \mathrm{~A}, 9999$	9999				
83	Rated motor voltage	0 to 1000 V	$\begin{aligned} & \hline[200 \mathrm{~V} \\ & \text { class] } \\ & 200 \mathrm{~V} \\ & {[400 \mathrm{~V}} \\ & \text { class] } \\ & 400 \mathrm{~V} \\ & {[575 \mathrm{~V}} \\ & \text { class] } \\ & 575 \mathrm{~V} \end{aligned}$	127	PID control automatic switchover frequency	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 0999 \end{aligned}$	9999
				128	PID action selection	$\begin{aligned} & 0,20,21,40 \text { to } \\ & 43,50,51,60, \\ & 61,1000,1001, \\ & 101,1011, \\ & 2000,2001, \\ & 2010,2011 \\ & \hline \end{aligned}$	0
84	Rated motor frequency	$\begin{aligned} & 10 \text { to } 400 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999	129	PID proportional band	$\begin{aligned} & 0.1 \% \text { to } 1000 \%, \\ & 9999 \end{aligned}$	100\%
89	Speed control gain (Advanced magnetic flux vector)	$\begin{aligned} & 0 \% \text { to } 200 \%, \\ & 9999 \end{aligned}$	9999	130	PID integral time	$\begin{array}{\|l\|} \hline 0.1 \text { to } 3600 \mathrm{~s}, \\ 9999 \end{array}$	1 s
				131	PID upper limit	$\begin{aligned} & \begin{array}{l} 0 \% \text { to } 100 \%, \\ 9999 \end{array} \\ & \hline \end{aligned}$	9999
90	Motor constant (R1)	0 to $50 \Omega, 9999$	9999	132	PID lower limit	$\begin{aligned} & \text { 0\% to } 100 \%, \\ & 9999 \end{aligned}$	9999
91	Motor constant (R2)	0 to $50 \Omega, 9999$	9999				
92	Motor constant (L1)/ d-axis inductance (Ld)	$\begin{aligned} & 0 \text { to } 6000 \mathrm{mH}, \\ & 9999 \end{aligned}$	9999	133	PID action set point	$\begin{aligned} & \hline 0 \% \text { to } 100 \%, \\ & 9999 \end{aligned}$	9999
				134	PID differential time	$\begin{aligned} & 0.01 \text { to } 10 \mathrm{~s}, \\ & 9999 \end{aligned}$	9999
93	Motor constant (L2)/ q -axis inductance (Lq)	$\begin{aligned} & 0 \text { to } 6000 \mathrm{mH}, \\ & 9999 \end{aligned}$	9999	145	PU display language selection [E800]	0 to 7	-
94	Motor constant (X)	$\begin{array}{\|l\|} \hline 0 \% \text { to } 100 \%, \\ 9999 \\ \hline \end{array}$	9999	147	Acceleration/ deceleration time switching frequency	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999
95	Online auto tuning selection	0,1	0	150	Output current detection level	0\% to 400\%	150\%
96	Auto tuning setting/ status	0, 1, 11	0	151	Output current detection signal delay time	0 to 10 s	0 s
Parameter 100 to 99							
				152	Zero current detection level	0\% to 400\%	5\%
Parameter	Name	Setting Range	Initial Value ${ }^{* 1}$	153	Zero current detection time	0 to 10 s	0.5 s
117	PU communication station number [E800]	0 to 31	0	154	Voltage reduction selection during stall prevention operation	1,11	1
118	PU communication speed [E800]	$\begin{array}{\|l\|} \hline 48,96,192, \\ 384,576,768, \\ 1152 \\ \hline \end{array}$	192	156	Stall prevention operation selection	$\begin{aligned} & 0 \text { to } 31,100, \\ & 101 \end{aligned}$	0

Parameter	Name	Setting Range	Initial Value ${ }^{* 1}$	Parameter	Name	Setting Range	Initial Value ${ }^{* 1}$	
157	OL signal output timer	0 to 25 s, 9999	0 s	185	NET X1 input selection	0 to $4,8,13$ to $15,18,23,24$, 26, 27, 30, 37, 42, 43, 46, 47, 50, 51, 72, 74, 76,87 to 89,92 , 9999	9999	
158	AM terminal function	$\begin{aligned} & 1 \text { to } 3,5 \text { to } 14, \\ & 17,18,21,24, \end{aligned}$	1	186	NET X2 input selection			
	[E800-4][E800-5]	54, 61, 62, 65, 67, 70, 91, 97		187	NET X3 input selection			
160	User group read selection Simple	0, 1, 9999	0	188	NET X4 input selection			
161	Frequency setting/ key lock operation	0, 1, 10, 11	0	189	NET X5 input selection			
162	Automatic restart after instantaneous power failure selection	0, 1, 10, 11	0	190	RUN terminal function selection	$0,1,3,4,7,8$,11 to $16,20,24$ to 26,30 to 36 , 38 to 41,44 to $48,56,57,60$ to 64, 70, 80, 81, 84, 90 to 93 , 95, 96, 98 to 101, 103, 104, 107, 108, 111 to 116, 120, 124 to 126, 130 to 136 , 138 to 141, 144 to 148,156 , 157, 160 to 164, 170, 180, 181, 184, 190 to 193, 195, 196, 198, 199, 206, 211 to 213, 242 [E800(SC)E], 306, 311 to 313, 342 9999	0	
165	Stall prevention operation level for restart	0\% to 400\%	150\%					
166	Output current detection signal retention time	0 to $10 \mathrm{~s}, 9999$	0.1 s					
167	Output current detection operation selection	0, 1, 10, 11	0	191	FU terminal function selection		4	
168	Parameter for manufacturer setting. Do not set.							
169								
170	Watt-hour meter clear	0, 10, 9999	9999					
171	Operation hour meter clear	0,9999	9999					
172	User group registered display/ batch clear	9999, (0 to 16)	0	192	ABC terminal function selection	0, 1, 3, 4, 7, 8, 11 to $16,20,24$ to 26, 30 to 36,38 to 41,44 to 48 , $56,57,60$ to 64 , 70, 80, 81, 82 [E800(SC)EPA], 84, 90, 91, 95, 96, 98 to 101, 103, 104, 107, 108, 111 to 116, 120, 124 to 126, 130 to 136,138 to 141, 144 to 148, 156, 157, 160 to 164, 170, 180, 181, 182 [E800(SC)EPA], 184, 190, 191, 195, 196, 198, 199, 206, 211 to 213, 242 [E800(SC)E], 306, 311 to 313, 342 [E800-(SC)E], 9999	99	
173	User group registration	0 to 1999, 9999	9999					
174	User group clear	0 to 1999, 9999	9999					
178	STF/DIO terminal function selection	0 to 5, 7, 8, 10, 12 to $16,18,23$ to $27,30,37$, 42, 43, 46, 47, 50, 51, 60, 62, 65 to 67, 72, 74, 76, 87 to 89,92 , 9999	60					
179	STR/DI1 terminal function selection	0 to 5, 7, 8, 10, 12 to $16,18,23$ to $27,30,37$, 42, 43, 46, 47, 50, 51, 61, 62, 65 to $67,72,74$, 76,87 to 89,92 , 9999	61					
180	RL terminal function selection	[E800] 0 to 5, 7, 8, 10, 12 to $16,18,23$ to 27, 30, 37, $42,43,46,47$, 50, 51, 62, 65 to 67, 72, 74, 76, 87 to 89,92 , 9999 [E800-(SC)E] 0 to 4, 8, 13 to $15,18,23,24$, 26, 27, 30, 37, 42, 43, 46, 47, 50, 51, 72, 74, 76, 87 to 89,92 , 9999	0					
181	RM terminal function selection		1					
182	RH terminal function selection		2					
183	MRS terminal function selection		24					
184	RES terminal function selection		$\begin{gathered} {[E 800]} \\ 62 \\ {[\text { [E800- }} \\ \text { (SC)E] } \\ 9999 \end{gathered}$					

Parameter	Name	Setting Range	Initial Value ${ }^{* 1}$	Parameter	Name	Setting Range	Initial Value *1
193	NET Y1 output selection	$0,1,3,4,7,8$, 11 to 16, 20, 24 to 26,30 to 36 , 38 to 41,44 to 48, $56,57,60$ to 64,90 , to 93,95 , 84,9 98 to 101, 103, 104, 107, 108, 111 to 116, 120, 124 to 126, 130 to 136,138 to 141, 144 to 148 , 156, 157, 160 to 164, 170, 180, 181, 184, 190 to 193, 195, 198, 199, 206, 211 to 213, 242 [E800(SC)E], 306, 311 to 313,342 [E800-(SC)E], 9999	9999	267	Terminal 4 input selection	0 to 2	0
				268	Monitor decimal digits selection	0, 1,9999	9999
194	NET Y2 output selection		9999	269	Parameter for manufacturer setting. Do not set.		
				270	Stop-on-contact control selection	0, 1, 11	0
195	NET Y3 output selection		9999	275	Stop-on contact excitation current low-speed scaling factor	$0 \% \text { to } 300 \% \text {, }$ 9999	9999
				276	PWM carrier frequency at stop-on contact	0 to 9, 9999	9999
196	NET Y4 output selection		9999	277	Stall prevention operation current switchover	0, 1	0
198	Display corrosion	(1 to 3)	1	278	Brake opening frequency	0 to 30 Hz	3 Hz
				279	Brake opening current	0\% to 400\%	130\%
Parameter 200 to 299				280	Brake opening current detection time	0 to 2 s	0.3 s
Parameter	Name	Setting Range	Initial				
232 to	Multi-speed setting	0 to 590 Hz ,	Value ${ }^{\text {- }}$	281	Brake operation time at start	0 to 5 s	0.3 s
239	(speed 8 to speed 15)	9999		282	Brake operation frequency	0 to 30 Hz	6 Hz
240	Soft-PWM operation selection	0,1	1	283	Brake operation time at stop	0 to 5 s	0.3 s
241	Analog input display unit switchover	0, 1	0	284	Deceleration detection function selection		0
244	Cooling fan operation selection	0, 1	1			0,1	
245	Rated slip	$\begin{array}{\|l} \hline 0 \% \text { to } 50 \%, \\ 9999 \end{array}$	9999	285	Overspeed detection frequency	0 to $30 \mathrm{~Hz}, 9999$	9999
246	Slip compensation time constant	0.01 to 10 s	0.5 s		Speed deviation excess detection		
247	Constant output range slip compensation selection	0,9999	9999		frequency		
				286	Droop gain	0\% to 100\%	0\%
				287	Droop filter time constant	0 to 1 s	0.3 s
249	Earth (ground) fault detection at start	0, 1	$\begin{aligned} & \text { Gr.1: } 0 \\ & \text { Gr.2: } 1 \end{aligned}$	289	Inverter output terminal filter	$\begin{aligned} & 5 \text { to } 50 \mathrm{~ms}, \\ & 9999 \end{aligned}$	9999
250	Stop selection	$\begin{aligned} & \hline 0 \text { to } 100 \mathrm{~s}, 1000 \\ & \text { to } 1100 \mathrm{~s}, 8888, \\ & 9999 \end{aligned}$	9999	290	Monitor negative output selection	$\begin{aligned} & 0,1,4,5,8,9, \\ & 12,13 \end{aligned}$	0
251	Output phase loss protection selection	0,1	1	292	Automatic acceleration/ deceleration	0, 1, 7, 8, 11	0
255	Life alarm status display	(0 to 879)	0				
256	Inrush current limit circuit life display	(0\% to 100\%)	100\%	293	Acceleration/ deceleration separate selection	0 to 2	0
257	Control circuit capacitor life display	(0\% to 100\%)	100\%	295	Frequency change increment amount setting [E800]	$\begin{aligned} & 0,0.01,0.1,1, \\ & 10, \end{aligned}$	0
258	Main circuit capacitor life display	(0\% to 100\%)	100\%	296	Password lock level	$\begin{aligned} & \text { 0 to 6, 99, } 100 \\ & \text { to 106, } 199, \\ & 9999 \end{aligned}$	9999
	Main circuit	0, 1	0				
259	capacitor life measuring			297	Password lock/ unlock	$\begin{aligned} & (0 \text { to } 5), 1000 \text { to } \\ & 9998,9999 \end{aligned}$	9999
260	PWM frequency automatic switchover	0, 10	10	298	Frequency search gain	$\begin{aligned} & 0 \text { to } 32767, \\ & 9999 \end{aligned}$	9999
261	Power failure stop selection	0 to 2	0	299	Rotation direction detection selection at restarting	0, 1, 9999	0

Parameter 300 to 399

Parameter	Name	Setting Range	Initial Value *1
$313{ }^{* 7}$	DO0 output selection	$\begin{aligned} & 0,1,3,4,7,8, \\ & 11 \text { to } 16,20,24 \\ & \text { to } 26,30 \text { to } 36 \text {, } \\ & 38 \text { to } 41,44 \text { to } \\ & 48,56,57,60 \text { to } \\ & 64,70,80,81, \\ & 84,90 \text { to } 93,95, \\ & 96,98 \text { to } 101, \\ & 103,104,107, \\ & 108,111 \text { to } 116, \\ & 120,1244 \text { to } 126, \\ & 130 \text { to } 136,138 \\ & \text { to } 141,144 \text { to } \\ & 148,156,157, \\ & 160 \text { to } 164,170, \\ & 180,181,184, \\ & 190 \text { to } 193,195, \\ & 196,198,199, \\ & 206,211 \text { to } 213, \\ & 242 \text { [E800- } \\ & \text { (SC)E], } 306, \\ & 311 \text { to } 313,342 \\ & \text { [E800-(SC)E], } \\ & 9999 \end{aligned}$	9999
314*7	DO1 output selection		9999
$315{ }^{*}$	DO2 output selection		9999
$316{ }^{*}$	DO3 output selection		9999
$317{ }^{*}$	DO4 output selection		9999
$318{ }^{* 7}$	DO5 output selection		9999
$319{ }^{* 7}$	DO6 output selection		9999
320*7	RA1 output selection	0, 1, 3, 4, 7, 8 , 11 to 16, 20, 24 to 26,30 to 36 , 38 to 41,44 to $48,56,57,60$ to 64, 70, 80, 81, 84, 90, 91, 95, 96, 98, 99, 206, 211 to 213,242 [E800-(SC)E], 9999	0
321*7	RA2 output selection		1
322*7	RA3 output selection		4
338	Communication operation command source	0, 1	0
339	Communication speed command source	0 to 2	0
340	Communication startup mode selection	0, 1, 10	$[\mathrm{E} 800]$ 0 $[\mathrm{E} 800-(\mathrm{SC}) \mathrm{E}]$ 10
342	Communication EEPROM write selection	0, 1	0
343	Communication error count [E800]	(0 to 999)	0
$349 * 8$	Communication reset selection	0, 1	0
359*4	Encoder rotation direction	100, 101	101
$367 * 4$	Speed feedback range	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999
$368 * 4$	Feedback gain	0 to 100	1
369*4	Number of encoder pulses	2 to 4096	1024
374	Overspeed detection level	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999
375	Faulty acceleration rate detection level	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	9999
376*4	Encoder signal loss detection enable/ disable selection	0, 1	0
390	\% setting reference frequency [E800-(SC)EPA]	1 to 590 Hz	$\begin{gathered} \text { Gr.1: } 60 \mathrm{~Hz} \\ \text { Gr.2: }- \end{gathered}$

Parameter 400 to 499

Parameter	Name	Setting Range	Initial Value *1
414	PLC function operation selection	0 to 2, 11, 12	0
415	Inverter operation lock mode setting	0, 1	0
420	Command pulse scaling factor numerator (electronic gear numerator)	1 to 32767	1
421	Command pulse multiplication denominator (electronic gear denominator)	1 to 32767	1
422	Position control gain	0 to $150 \mathrm{~s}^{-1}$	$10 \mathrm{~s}^{-1}$
423	Position feed forward gain	0\% to 100\%	0\%
425	Position feed forward command filter	0 to 5 s	0 s
426	In-position width	$\begin{aligned} & 0 \text { to } 32767 \\ & \text { pulses } \end{aligned}$	100 pulses
427	Excessive level error	$\begin{aligned} & \hline 0 \text { to } 400 \mathrm{k} \\ & \text { pulses, } 9999 \end{aligned}$	40k pulses
430	Pulse monitor selection	0 to 5, 100 to 105, 1000 to 1005, 1100 to 1105, 8888, 9999	9999
442	Default gateway address 1 [E800(SC)E]		
443	Default gateway address 2 [E800(SC)E]		0
444	Default gateway address 3 [E800(SC)E]	0 to 255	
445	Default gateway address 4 [E800(SC)E]		
446	Model position control gain	0 to $150 \mathrm{~s}^{-1}$	$25 \mathrm{~s}^{-1}$
450	Second applied motor	[200/400 V class] $0,3,5,6,10,13$, $15,16,20,23,30$, $33,40,43,50,53$, 70, 73, 1800, 1803, 8090, 8093, 9090, 9093, 9999 [575 V class] $0,3,5,6,10,13$, 15, 16, 30, 33, 8090, 8093, 9090, 9093, 9999	9999
451	Second motor control method selection	$\begin{aligned} & 10 \text { to } 12,20,40 \text {, } \\ & 9999 \end{aligned}$	9999
453	Second motor capacity	$\begin{aligned} & 0.1 \text { to } 30 \mathrm{~kW} \text {, } \\ & 9999 \end{aligned}$	9999
454	Number of second motor poles	$\begin{aligned} & 2,4,6,8,10 \\ & 12,9999 \end{aligned}$	9999
455	Second motor excitation current	0 to 500 A, 9999	9999

Para-	Nam	Setting Range		Parameter 500 to 599			
456	Rated second motor voltage	0 to 1000 V	$\begin{gathered} {[200 \mathrm{~V} \text { class }]} \\ 200 \mathrm{~V} \\ {[400 \mathrm{~V} \text { class }]} \\ 400 \mathrm{~V} \\ {[575 \mathrm{~V} \text { class }]} \\ 575 \mathrm{~V} \end{gathered}$	Parameter	Name	Setting Range	Initial Value *1
				502	Stop mode selection at communication error	0 to 2, 6	0
	Rated second motor frequency	$\begin{aligned} & 10 \text { to } 400 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	9999	503	Maintenance timer	0 (1 to 9998)	0
457				504	Maintenance timer warning output set time	0 to 9998, 9999	9999
458	Second motor constant (R1)	0 to $50 \Omega, 9999$	9999				
459	Second motor constant (R2)	0 to $50 \Omega, 9999$	9999	505	Speed setting reference	1 to 590 Hz	Gr.1: 60 Hz Gr.2: 50 Hz
460	Second motor constant (L1) / d-axis inductance (Ld)	$\begin{aligned} & 0 \text { to } 6000 \mathrm{mH} \text {, } \\ & 9999 \end{aligned}$	9999	506	Display estimated main circuit capacitor residual life	(0\% to 100\%)	100\%
461	Second motor constant (L2) / q-axis inductance (Lq)	$\begin{aligned} & 0 \text { to } 6000 \mathrm{mH}, \\ & 9999 \end{aligned}$	9999	507	Display ABC relay contact life	0\% to 100\%	100\%
462	Second motor constant (X)	$\begin{aligned} & 0 \% \text { to } 100 \% \text {, } \\ & 9999 \end{aligned}$	9999	509	Display power cycle life	(0\% to 100\%)	100\%
463	Second motor auto tuning setting/status	0, 1, 11	0	510	Rough match output range	0 to 32767	0
464	Digital position control sudden stop deceleration time	0.01 to 360 s	0.01 s	511	Home position return shifting speed	0 to 400 Hz	0.5 Hz
				538	Current position retention selection	$\begin{aligned} & \text { 1, 2, 11, 12, } \end{aligned}$	9999
465	First target position lower 4 digits	0 to 9999	0	541*8	Frequency command sign selection	0, 1	0
466	First target position upper 4 digits	0 to 9999	0	544*8	CC-Link extended setting	$\begin{aligned} & 0,1,12,14,18, \\ & 38,100,112, \\ & 114,118,138 \end{aligned}$	0
467	Second target position lower 4 digits	0 to 9999	0				
				547	USB communication station number	0 to 31	0
468	Second target position upper 4 digits	0 to 9999	0	548	USB communication check time interval	$\begin{aligned} & 0 \text { to } 999.8 \mathrm{~s}, \\ & 9999 \end{aligned}$	9999
469	Third target position lower 4 digits	0 to 9999	0	540	Protocol selection	0, 1	0
					NET mode operation command source selection	$\begin{aligned} & {[\mathrm{E} 800]} \\ & 0,2,9999 \\ & {[\mathrm{E} 800-(\mathrm{SC}) \mathrm{E}]} \\ & 0,5,9999 \end{aligned}$	9999
470	Third target position upper digits	0 to 9999	0				
471	Fourth target position lower digits	0 to 9999	0	551	PU mode operation command source selection	$\begin{aligned} & {[\text { [E800] }} \\ & 2 \text { to 4, } 9999 \\ & {[\text { E800-(SC)E] }} \\ & 3,4,9999 \end{aligned}$	9999
472	Fourth target position upper 4 digits	0 to 9999	0				
				552	Frequency jump range	0 to $30 \mathrm{~Hz}, 9999$	9999
473	Fifth target position lower 4 digits	0 to 9999	0	553	PID deviation limit	$\begin{aligned} & 0 \% \text { to } 100 \%, \\ & 9999 \end{aligned}$	9999
474	Fifth target position upper 4 digits	0 to 9999	0	554	PID signal operation selection	0 to 3, 10 to 13	0
475	Sixth target position lower 4 digits	0 to 9999	0	555	Current average time	0.1 to 1 s	1 s
				556	Data output mask time	0 to 20 s	0 s
476	Sixth target position upper digits	0 to 9999	0				
477	Seventh target position lower 4 digits	0 to 9999	0	557	Current average value monitor signal output reference current	0 to 500 A	Inverter rated current
478	Seventh target position upper 4	0 to 9999	0	560	Second frequency search gain	$\begin{aligned} & 0 \text { to } 32767 \text {, } \\ & 9999 \end{aligned}$	9999
	digits			561	PTC thermistor protection level	$\begin{aligned} & 0.5 \text { to } 30 \mathrm{k} \Omega \text {, } \\ & 9999 \end{aligned}$	9999
495	Remote output	0, 1, 10, 11	0				
	selection			563	Energization time carrying-over times	(0 to 65535)	0
496	Remote output data 1	0 to 4095	0				
497	Remote output data 2	0 to 4095	0	564	Operating time carrying-over times	(0 to 65535)	0
498	PLC function flash memory clear	$\begin{aligned} & \text { 0, } 9696 \text { (0 to } \\ & 9999) \end{aligned}$	0	569	Second motor speed control gain	$\begin{aligned} & 0 \% \text { to } 200 \% \text {, } \\ & 9999 \end{aligned}$	9999

Parameter	Name	Setting Range	Initial Value *1
570	Multiple rating setting [3-phase]	1, 2	2
571	Holding time at a start	0 to $10 \mathrm{~s}, 9999$	9999
574	Second motor online auto tuning	0, 1	0
575	Output interruption detection time	$\begin{aligned} & 0 \text { to } 3600 \mathrm{~s} \text {, } \\ & 9999 \end{aligned}$	1 s
576	Output interruption detection level	0 to 590 Hz	0 Hz
577	Output interruption cancel level	900\% to 1100\%	1000\%
592	Traverse function selection	0 to 2	0
593	Maximum amplitude amount	0\% to 25\%	10\%
594	Amplitude compensation amount during deceleration	0\% to 50\%	10\%
595	Amplitude compensation amount during acceleration	0\% to 50\%	10\%
596	Amplitude acceleration time	0.1 to 3600 s	5 s
597	Amplitude deceleration time	0.1 to 3600 s	5 s

Parameter 600 to 699

Parameter	Name	Setting Range	Initial Value *1
600	First free thermal reduction frequency 1	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	9999
601	First free thermal reduction ratio 1	1\% to 100\%	100\%
602	First free thermal reduction frequency 2	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	9999
603	First free thermal reduction ratio 2	1\% to 100\%	100\%
604	First free thermal reduction frequency 3	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	9999
607	Motor permissible load level	110\% to 250%	150\%
608	Second motor permissible load level	$\begin{aligned} & 110 \% \text { to } 250 \% \text {, } \\ & 9999 \end{aligned}$	9999
609	PID set point/ deviation input selection	2 to 5	2
610	PID measured value input selection	2 to 5	3
611	Acceleration time at a restart	$\begin{aligned} & 0 \text { to } 3600 \mathrm{~s} \text {, } \\ & 9999 \end{aligned}$	9999
631	Inverter output fault detection enable/ disable selection	0, 1	0
639	Brake opening current selection	0, 1	0
640	Brake operation frequency selection	0, 1	0

Parameter	Name	Setting Range	$\begin{gathered} \text { Initial } \\ \text { Value }{ }^{* 1} \end{gathered}$
653	Speed smoothing control	0\% to 200\%	0\%
654	Speed smoothing cutoff frequency	0 to 120 Hz	20 Hz
660	Increased magnetic excitation deceleration operation selection	0, 1	0
661	Magnetic excitation increase rate	$\begin{aligned} & 0 \% \text { to } 40 \% \text {, } \\ & 9999 \end{aligned}$	9999
662	Increased magnetic excitation current level	0\% to 200\%	100\%
665	Regeneration avoidance frequency gain	0\% to 200\%	100\%
673	SF-PR slip amount adjustment operation selection [200/400 V class]	2, 4, 6, 9999	9999
674	SF-PR slip amount adjustment gain [200/400 V class]	0\% to 500\%	100\%
675	User parameter auto storage function selection	1,9999	9999
690	Deceleration check time	$\begin{aligned} & 0 \text { to } 3600 \mathrm{~s} \text {, } \\ & 9999 \end{aligned}$	1 s
692	Second free thermal reduction frequency 1	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999
693	Second free thermal reduction ratio 1	1\% to 100\%	100\%
694	Second free thermal reduction frequency 2	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	9999
695	Second free thermal reduction ratio 2	1\% to 100\%	100\%
696	Second free thermal reduction frequency 3	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999
698	Speed control D gain	0\% to 100\%	0\%
699	Input terminal filter	$\begin{aligned} & 5 \text { to } 50 \mathrm{~ms}, \\ & 9999 \end{aligned}$	9999

Parameter 700 to 799

Para- meter	Name	Setting Range	Initial Value *1
702	Maximum motor frequency	0 to 400 Hz, 9999	9999
706	Induced voltage constant (phi f)	0 to 5000 mV (rad/s), 9999	9999
707	Motor inertia (integer)	10 to 999, 9999	9999
711	Motor Ld decay ratio	0% to 100\%, 9999	9999
712	Motor Lq decay ratio	0% to 100%, 9999	9999
717	Starting resistance tuning compensation coefficient 1	0% to 200\%, 9999	9999
720	Starting resistance tuning compensation coefficient 2	0% to 200\%, 9999	9999

Parameter	Name	Setting Range	Initial Value *1	Parameter 800 to 999			
721	Starting magnetic pole position detection pulse width	$\begin{aligned} & 0 \text { to } 6000 \mu \mathrm{~s}, \\ & 9999 \end{aligned}$	9999	Parameter	Name	Setting Range	Initial Value *1
				800	Control method selection	$\begin{aligned} & 0 \text { to } 5,9,10 \text { to } \\ & 12,19,20,40 \end{aligned}$	40
724	Motor inertia (exponent)	0 to 7, 9999	9999	801	Output limit level	$\begin{aligned} & 0 \% \text { to } 400 \% \text {, } \\ & 9999 \end{aligned}$	9999
725	Motor protection current level	$\begin{aligned} & 100 \% \text { to } 500 \% \text {, } \\ & 9999 \end{aligned}$	9999	802	Pre-excitation selection	0, 1	0
728	Device instance number (Upper 3 digits) [E800-(SC)EPA]	0 to 419	0	803	Constant output range torque characteristic selection	0 to 2, 10	0
729	Device instance number (Lower 4 digits) [E800-(SC)EPA]	0 to 9999	0	804	Torque command source selection	0, 1, 3 to 6	0
737	Second motor starting resistance tuning compensation coefficient 2	$\begin{aligned} & 0 \% \text { to } 200 \% \text {, } \\ & 9999 \end{aligned}$	9999	805	Torque command value (RAM)	600\% to 1400\%	1000\%
				806	Torque command value (RAM, EEPROM)	600\% to 1400\%	1000\%
738	Second motor induced voltage constant (phif)	$\begin{aligned} & 0 \text { to } 5000 \mathrm{mV} \\ & \text { (rad/s), } 9999 \end{aligned}$	9999				
				807	Speed limit selection	0,1	0
739			9999	808	Speed limit	0 to 400 Hz	Gr.1: 60 Hz Gr.2: 50 Hz
	Second motor Ld decay ratio	$\begin{aligned} & 0 \% \text { to } 100 \% \text {, } \\ & 9999 \end{aligned}$		809	Reverse-side speed limit	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999
740	Second motor Lq decay ratio	$\begin{aligned} & 0 \% \text { to } 100 \% \text {, } \\ & 9999 \end{aligned}$	9999				
741	Second motor starting resistance tuning compensation coefficient 1	$\begin{aligned} & 0 \% \text { to } 200 \% \text {, } \\ & 9999 \end{aligned}$	9999	810	Torque limit input method selection	0 to 2	0
				811	Set resolution switchover	0, 10	0
742	Second motor magnetic pole detection pulse width	$\begin{aligned} & 0 \text { to } 6000 \mu \mathrm{~s}, \\ & 9999 \end{aligned}$	9999	812	Torque limit level (regeneration)	$\begin{aligned} & 0 \% \text { to } 400 \% \text {, } \\ & 9999 \end{aligned}$	9999
				813	Torque limit level (3rd quadrant)	$\begin{aligned} & 0 \% \text { to } 400 \% \text {, } \\ & 9999 \end{aligned}$	9999
743	Second motor maximum frequency	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999	814	Torque limit level (4th quadrant)	$\begin{aligned} & 0 \% \text { to } 400 \% \text {, } \\ & 9999 \end{aligned}$	9999
744	Second motor inertia (integer)	10 to 999, 9999	9999	815	Torque limit level 2	$\begin{aligned} & 0 \% \text { to } 400 \%, \\ & 9999 \end{aligned}$	9999
745	Second motor inertia (exponent)	0 to 7, 9999	9999	816	Torque limit level during acceleration	$\begin{aligned} & 0 \% \text { to } 400 \% \text {, } \\ & 9999 \end{aligned}$	9999
746	Second motor protection current level	$\begin{aligned} & 100 \% \text { to } 500 \% \text {, } \\ & 9999 \end{aligned}$	9999	817	Torque limit level during deceleration	$\begin{aligned} & 0 \% \text { to } 400 \% \text {, } \\ & 9999 \end{aligned}$	9999
				820	Speed control P gain 1	0\% to 1000\%	60\%
759	PID unit selection	0 to 43, 9999	9999	821	Speed control integral time 1	0 to 20 s	0.333 s
774	Operation panel monitor selection 1	[E800] $[\mathrm{E} 800-(\mathrm{SC}) \mathrm{EPB}]$ 1 to 3, 5 to 14, 17 to 20,23 to 33, $35,38,40$ to 42, 44, 45, 50 to 57, 61, 62, 64, 65, 67, 91, 97, 100, 9999 [E800-(SC)EPA] 1 to 3,5 to 14, 17 to 20,23 to 33, 35, 38, 40 to $42,44,45,50$ to 57, 61, 62, 64, 65, 67, 83, 91, 97, 100, 9999	9999	822	Speed setting filter 1	0 to $5 \mathrm{~s}, 9999$	9999
				823*4	Speed detection filter 1	0 to 0.01 s	0.001 s
775	Operation panel monitor selection 2		9999	824	Torque control \mathbf{P} gain 1 (current loop proportional gain)	0\% to 500\%	100\%
				825	Torque control integral time 1 (current loop integral time)	0 to 500 ms	5 ms
776	Operation panel monitor selection 3		9999	826	Torque setting filter 1	0 to $5 \mathrm{~s}, 9999$	9999
				828	Model speed control gain	0 to $1000 \mathrm{rad} / \mathrm{s}$	$100 \mathrm{rad} / \mathrm{s}$
779	Operation frequency during communication error	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999	830	年 ${ }^{\text {Speed control P gain } 2}$	$\begin{aligned} & 0 \% \text { to } 1000 \%, \\ & 9999 \end{aligned}$	9999
791*3	Acceleration time in low-speed range	$\begin{aligned} & 0 \text { to } 3600 \mathrm{~s}, \\ & 9999 \end{aligned}$	9999	831	Speed control integral time 2	0 to 20 s, 9999	9999
792*3	Deceleration time in low-speed range	$\begin{aligned} & 0 \text { to } 3600 \mathrm{~s} \text {, } \\ & 9999 \end{aligned}$	9999	832	Speed setting filter 2	0 to $5 \mathrm{~s}, 9999$	9999
				$833{ }^{*} 4$	Speed detection filter 2	$\begin{aligned} & 0 \text { to } 0.01 \mathrm{~s} \text {, } \\ & 9999 \end{aligned}$	9999

Parameter	Name	Setting Range	$\begin{gathered} \text { Initial } \\ \text { Value } \end{gathered}$	Parameter	Name	Setting Range	Initial Value *1
834	Torque control P gain 2 (current loop proportional gain)	$\begin{aligned} & 0 \% \text { to } 500 \% \text {, } \\ & 9999 \end{aligned}$	9999	882	Regeneration avoidance operation selection	0 to 2	0
835	Torque control integral time 2 (current loop integral time)	$\begin{aligned} & 0 \text { to } 500 \mathrm{~ms} \text {, } \\ & 9999 \end{aligned}$	9999	883	Regeneration avoidance operation level	300 to 1200 V	$\left[\begin{array}{c}{[200 \mathrm{~V} \text { class }]} \\ 400 \mathrm{~V} \\ {[400 \mathrm{~V} \text { class }]} \\ 780 \mathrm{~V} \\ {[575 \mathrm{~V} \text { class }]} \\ 944 \mathrm{~V}\end{array}\right]$
836	Torque setting filter 2	0 to $5 \mathrm{~s}, 9999$	9999				
840	Torque bias selection	0 to 3, 9999	9999	885	Regeneration avoidance compensation frequency limit value	0 to $45 \mathrm{~Hz}, 9999$	6 Hz
841	Torque bias 1	$\begin{aligned} & \text { 600\% to 1400\%, } \\ & 9999 \end{aligned}$	9999				
842	Torque bias 2	$\begin{aligned} & \hline 600 \% \text { to } 1400 \% \text {, } \\ & 9999 \end{aligned}$	9999				
843	Torque bias 3	$\begin{aligned} & \text { 600\% to } 1400 \% \text {, } \\ & \text { aga9 } \end{aligned}$	9999	886	Regeneration avoidance voltage gain	0\% to 200\%	100\%
844	Torque bias filter	0 to $5 \mathrm{~s}, 9999$	9999	888	Free parameter 1	0 to 9999	9999
845	Torque bias operation time	0 to $5 \mathrm{~s}, 9999$	9999	889	Free parameter 2	0 to 9999	9999
846	Torque bias balance compensation	$\begin{aligned} & 0 \% \text { to } 100 \% \text {, } \\ & 9999 \end{aligned}$	9999	891	Cumulative power monitor digit shifted times	0 to 4,9999	9999
847	Fall-time torque bias terminal 4 bias	$\begin{aligned} & 0 \% \text { to } 400 \% \text {, } \\ & 9999 \end{aligned}$	9999	892 893	Load factor	30\% to 150\%	100\%
848	Fall-time torque bias terminal 4 gain	$\begin{aligned} & 0 \% \text { to } 400 \% \text {, } \\ & 9999 \end{aligned}$	9999	893	Energy saving monitor reference (motor capacity)	0.1 to 30 kW	Inverter rated capacity
849	Analog input offset adjustment	0\% to 200\%	100\%	894	Control selection during commercial power-supply operation	0 to 3	0
850	Brake operation selection	0 to 2	0				
853	Speed deviation time	0 to 100 s	1 s	895	Power saving rate reference value	0, 1,9999	9999
854	Excitation ratio Terminal 4 function assignment	0\% to 100\%	100\%				
858	Terminal 4 function assignment	0, 4, 6, 9999	0	896	Power unit cost	0 to 500, 9999	9999
				897	Power saving monitor average time	$\begin{aligned} & 0 \text { to } 1000 \mathrm{~h} \text {, } \\ & 9999 \end{aligned}$	9999
859	Torque current/Rated PM motor current	0 to 500 A, 9999	9999				
				898	Power saving cumulative monitor clear	0, 1, 10, 9999	9999
860	Second motor torque current/Rated PM motor current	0 to 500 A, 9999	9999				
				899	Operation time rate (estimated value)	$\begin{aligned} & 0 \% \text { to } 100 \% \text {, } \\ & 9999 \end{aligned}$	9999
864	Torque detection	0\% to 400\%	150\%				
865	Low speed detection	0 to 590 Hz	1.5 Hz	986	Display safety fault code [E800-SCE]	0 to 127	0
866	Torque monitoring reference	0\% to 400\%	150\%	990	PU buzzer control	0, 1	1
867	AM output filter [E800-4][E800-5]	0 to 5 s	0.01 s	991	PU contrast adjustment	0 to 63	58
870	Speed detection hysteresis	0 to 15 Hz	0 Hz	992	Operation panel setting dial push monitor selection [E800]	0 to 3,5 to 14, 17 to 20,23 to $33,35,38,40$ to 42, 44, 45, 50 to 57, 61, 62, 64, 65, 67, 91, 97, 100	0
872	Input phase loss protection selection [3-phase]	0, 1	1				
873*4	Speed limit	0 to 400 Hz	20 Hz	997	Fault initiation	0 to 255, 9999	9999
874	OLT level setting	0\% to 400\%	150\%	998	PM parameter initializationSimple	$\begin{aligned} & 0,8009,8109, \\ & 9009,9109, \end{aligned}$	0
	Speed feed forward						
877	control/model adaptive speed control selection	0 to 2	0	999	Automatic parameter settingSimple	$\begin{aligned} & 10,12,20,21, \\ & 9999 \end{aligned}$	9999
878	Speed feed forward filter	0.01 to 1 s	0.01 s	Parameter 1000 to 1099			
879	Speed feed forward torque limit	0\% to 400\%	150\%	Parameter	Name	Setting Range	Initial Value *1
880	Load inertia ratio	0 to 200 times	7 times				
881	Speed feed forward gain	0\% to 1000\%	0\%	1002	Lq tuning target current adjustment coefficient	$\begin{aligned} & 50 \% \text { to } 150 \% \text {, } \\ & 9999 \end{aligned}$	9999
				1006	Clock (year)	2000 to 2099	2000

Parameter	Name	Setting Range	Initial Value *1	Parameter 1100 to 1399			
1007	Clock (month, day)	Jan. 1 to Dec. 31	101	Parameter	Name	Setting Range	Initial Value *1
1008	Clock (hour, minute)	0:00 to 23:59	0	1103*3	Deceleration time at emergency stop	0 to 3600 s	5 s
1015	Integral stop selection at limited frequency	0 to 2	0	1106	emergency stop Torque monitor filter Running speed	0 to $5 \mathrm{~s}, 9999$	9999
1016	PTC thermistor protection detection time	0 to 60 s	0 s	1107	Running speed monitor filter	0 to $5 \mathrm{~s}, 9999$	9999
				1108	Excitation current monitor filter	0 to $5 \mathrm{~s}, 9999$	9999
1020	Trace operation selection	0 to 3	0	1124	Station number in inverter-to-inverter link [E800-(SC)E]	0 to 5,9999	9999
1022	Sampling cycle	$\begin{aligned} & 1,2,5,10,50 \\ & 100,500,1000 \end{aligned}$	1				
1023	Number of analog channels	1 to 8	4	1125	Number of inverters in inverter-to-inverter link system [E800-(SC)E]	2 to 6	2
1024	Sampling auto start	0, 1	0				
1025	Trigger mode selection	0 to 4	0	$\begin{gathered} 1150 \text { to } \\ 1199 \end{gathered}$	PLC function user parameters 1 to 50	0 to 65535	0
1026	Number of sampling before trigger	0\% to 100\%	90\%	1200	AM output offset calibration [E800-4][E800-5]	2700 to 3300	3000
1027	Analog source	1 to 3,5 to 14 , 17 to 20, 23, 24, 32, 33, 35, 40 to 42, 52 to 54,61 , 62, 64, 65, 67, 83 [E800-(SC)EPA], 91, 97, 201 to 210, 212, 213, 222 to 227, 229 to 232,235 to 238	201				
	selection (1ch)			1222	First positioning acceleration time	0.01 to 360 s	5 s
1028	Analog source		202				
	selection (2ch) Analog source			1223	First positioning deceleration time	0.01 to 360 s	5 s
1029	selection (3ch)		203	1225	First positioning subfunction	$\begin{aligned} & 0,1,10,11, \\ & 100,101,110, \\ & 111 \end{aligned}$	10
1030	Analog source selection (4ch)		204				
1031	Analog source selection (5ch)		205	1226	Second positioning acceleration time	0.01 to 360 s	5 s
1032	Analog source selection (6ch)		206	1227	Second positioning deceleration time	0.01 to 360 s	5 s
1033	Analog source selection (7ch)		207	1229	Second positioning subfunction	$\begin{aligned} & 0,1,10,11 \\ & 100,101,110, \\ & 111 \end{aligned}$	10
1034	Analog source selection (8ch)		208	1230	Third positioning acceleration time	0.01 to 360 s	5 s
1035	Analog trigger channel	1 to 8	1	1231	Third positioning deceleration time	0.01 to 360 s	5 s
1036	Analog trigger operation selection	0, 1	0	1233	Third positioning subfunction	$\begin{aligned} & 0,1,10,11, \\ & 100,101,110, \\ & 111 \end{aligned}$	10
1037	Analog trigger level	600 to 1400	1000	1234	Fourth positioning acceleration time	0.01 to 360 s	5 s
1038	Digital source selection (1ch)	0 to 255	0				
1039	Digital source		0	1235	Fourth positioning deceleration time	0.01 to 360 s	5 s
1040	$\begin{aligned} & \text { selection (2ch) } \\ & \hline \text { Digital source } \\ & \text { selection (3ch) } \\ & \hline \end{aligned}$		0	1237	Fourth positioning subfunction	$\begin{aligned} & 0,1,10,11, \\ & 100,101,110, \\ & 111 \end{aligned}$	10
1041	Digital source selection (4ch)		0	1238	Fifth positioning acceleration time	0.01 to 360 s	5 s
1042	Digital source selection (5ch)		0	1239	Fifth positioning deceleration time	0.01 to 360 s	5 s
1043	Digital source selection (6ch)		0	1241	Fifth positioning subfunction	$\begin{aligned} & 0,1,10,11, \\ & 100,101,110, \\ & 111 \end{aligned}$	10
1044	Digital source selection (7ch)		0	1242	Sixth positioning acceleration time	0.01 to 360 s	5 s
1045	Digital source selection (8ch)		0	1243	Sixth positioning deceleration time	0.01 to 360 s	5 s
1046	Digital trigger channel	1 to 8	1	1245	Sixth positioning subfunction	$\begin{aligned} & 0,1,10,11, \\ & 100,101,110, \\ & 111 \end{aligned}$	10
1047	Digital trigger operation selection	0, 1	0	1246	Seventh positioning acceleration time	0.01 to 360 s	5 s
				1247	Seventh positioning deceleration time	0.01 to 360 s	5 s

Parameter	Name	Setting Range	$\begin{gathered} \text { Initial } \\ \text { Value } \end{gathered}$	Parameter 1400 to 1499			
1249	Seventh positioning subfunction	0, 10, 100, 110	10	Parameter	Name	Setting Range	Initial Value *1
1282	Home position return method selection	$\begin{aligned} & 2,3,4,6,103, \\ & 106,203,206 \end{aligned}$	4	1412	Motor induced voltage constant (phif) exponent	0 to 2, 9999	9999
1283	Home position return speed	0 to 400 Hz	2 Hz	1413	Second motor induced voltage constant (phi f) exponent	0 to 2, 9999	9999
1285	Home position shift amount lower 4 digits	0 to 9999	0				
1286	Home position shift amount upper 4 digits	0 to 9999	0	1424	Ethernet communication network number [E800-(SC)E]	1 to 239	1
1289	Home position return stopper torque	0\% to 200\%	40\%	1425	Ethernet communication station number [E800-(SC)E]	1 to 120	1
1290	Home position return stopper waiting time	0 to 10 s	0.5 s				
1292	Position control terminal input selection	$\begin{aligned} & 0,1,10,11 \\ & 100,101,110 \\ & 111 \end{aligned}$	0	1426	Link speed and duplex mode selection[E800-(SC)E]	0 to 4	0
1293	Roll feeding mode	0 to 2	0				
1293	selection	0 to 2	0	1427	Ethernet function selection 1[E800-(SC)E]	$\begin{aligned} & \text { [E800-(SC)EPA] } \\ & 502,5000 \text { to } \\ & 5002,5006 \text { to } \end{aligned}$	5001
1294	Position detection lower 4 digits	0 to 9999	0				
1295	Position detection upper 4 digits	0 to 9999	0	1428	Ethernet function selection 2 [E800-(SC)E]	$\begin{aligned} & 5008,5010 \text { to } \\ & 5013,44818, \\ & 45237,45238, \\ & 47808,61450, \\ & 9999 \end{aligned}$	45237
1296	Position detection selection	0 to 2	0	1429	Ethernet function selection 3 [E800-(SC)E]		45238
1297	Position detection hysteresis width	0 to 32767	0			502, 5000 to 5002, 5006 to 5008, 5010 to	
1318	User Defined Cyclic Communication Input fixing format selection [E800(SC)EPA]	20 to 23, 9999	9999	1430	Ethernet function selection 4 [E800-(SC)E]	5013, 34962 , 45237, 45238, 61450, 9999	9999
				1431	Ethernet signal loss detection function selection[E800-(SC)E]	0 to 3	3
	User Defined Cyclic Communication						
1319	Output fixing format selection [E800(SC)EPA]	70 to 73,9999 [F800-(SC)EPA]	9999	1432	Ethernet communication check time interval [E800-(SC)E]	$\begin{aligned} & 0 \text { to } 999.8 \mathrm{~s}, \\ & 9999 \end{aligned}$	1.5
$\begin{gathered} 1220 \text { to } \\ 1329 \end{gathered}$	User Defined Cyclic Communication Input 1 to 10 Mapping [E800(SC)E]	 [E800-(SC)EPA] 12288 to 13787, 20488,20489, 9999 [E800-(SC)EPB] $5,100,12288$ to 13787,20488, 20489,9999	9999	1434	Ethernet IP address 1 [E800-(SC)E]	0 to 255	192
				1435	Ethernet IP address $2 \text { [E800-(SC)E] }$	0 to 255	168
				1436	Ethernet IP address 3 [E800-(SC)E]	0 to 255	50
$\begin{gathered} 1330 \text { to } \\ 1343 \end{gathered}$	User Defined Cyclic Communication Output 1 to 14 Mapping [E800(SC)E]	[E800-(SC)EPA] 12288 to 13787, 16384 to 16483, 20488, 20489, 20981 to 20990, 9999 [E800-(SC)EPB] 6, 101, 12288 to 13787, 16384 to 16483, 20488, 20489, 20981 to 20990, 9999	9999	1437	Ethernet IP address 4 [E800-(SC)E]	0 to 255	1
				1438	Subnet mask 1 [E800-(SC)E]	0 to 255	255
				1439	Subnet mask 2 [E800-(SC)E]	0 to 255	255
				1440	Subnet mask 3 [E800-(SC)E]	0 to 255	255
1399	Inverter identification enable/ disable selection[E800-(SC)E]	0, 1	1	1441	Subnet mask 4 [E800-(SC)E]	0 to 255	0
				1442	IP filter address 1 (Ethernet) [E800-(SC)E]	0 to 255	0
				1443	IP filter address 2 (Ethernet) [E800-(SC)E]	0 to 255	0
				1444	IP filter address 3 (Ethernet) [E800-(SC)E]	0 to 255	0

Parameter	Name	Setting Range	Initial Value *1	Parameter	Name	Setting Range	Initial Value *1
1445	$\begin{array}{\|l} \hline \text { IP filter address } 4 \\ \text { (Ethernet) } \\ \text { [E800-(SC)E] } \\ \hline \end{array}$	0 to 255	0	1488	Upper limit warning detection width	$\begin{aligned} & 0 \% \text { to } 400 \% \text {, } \\ & 9999 \end{aligned}$	20\%
1446			9999	1489	Lower limit warning detection width	$\begin{aligned} & 0 \% \text { to } 400 \% \text {, } \\ & 9999 \end{aligned}$	20\%
	IP filter address 2 range specification (Ethernet) [E800-(SC)E]	0 to 255, 9999		1490	Upper limit fault detection width	$\begin{aligned} & 0 \% \text { to } 400 \% \text {, } \\ & 9999 \end{aligned}$	9999
1447	IP filter address 3 range specification (Ethernet)[E800-(SC)E]	0 to 255, 9999	9999	1491	Lower limit fault detection width	$\begin{aligned} & 0 \% \text { to } 400 \% \text {, } \\ & 9999 \end{aligned}$	9999
				1492	Load status detection signal delay time / load reference measurement waiting time	0 to 60 s	1 s
1448	IP filter address 4 range specification (Ethernet)[E800-(SC)E]	0 to 255, 9999	9999				
				1499	Parameter for manufacturer setting. Do not set.		
1449	Ethernet command source selection IP address 1 [E800-(SC)E]	0 to 255	0	Alphabe	(calibration paramet	ers, etc.)	
1450	Ethernet command source selection IP address 2[E800-(SC)E]	0 to 255	0	Parameter	Name	Setting Range	$\begin{aligned} & \text { Initial } \\ & \text { Value *1 } \end{aligned}$
				$\begin{gathered} \text { C0 } \\ (900)^{*} 5 \end{gathered}$	FM terminal calibration [E800-1]	-	-
1451	Ethernet command source selection IP address 3 [E800-(SC)E]	0 to 255	0				
				$\begin{gathered} \text { C1 } \\ (901)^{*} 5 \end{gathered}$	AM terminal calibration [E800-4][E800-5]	-	-
1452	Ethernet command source selection IP address 4 [E800-(SC)E]	0 to 255	0	$\begin{array}{\|c} \text { C2 } \\ (902)^{* 5} \\ \hline \end{array}$	Terminal 2 frequency setting bias frequency	0 to 590 Hz	0 Hz
1453	Ethernet command source selection IP address 3 range specification [E800-(SC)E]	0 to 255, 9999	9999	$\begin{gathered} \text { C3 } \\ (902)^{*} 5 \\ \hline \end{gathered}$	Terminal 2 frequency setting bias	0\% to 300\%	0\%
				$\begin{gathered} 125 \\ (903)^{*} 5 \end{gathered}$	Terminal 2 frequency setting gain frequency	0 to 590 Hz	Gr.1: 60 Hz Gr.2: 50 Hz
1454	Ethernet command source selection IP address 4 range specification [E800-(SC)E]	0 to 255, 9999	9999	$\begin{array}{\|c\|} \hline \text { C4 } \\ (903)^{*} 5 \end{array}$	Terminal 2 frequency setting gain	0\% to 300\%	100\%
					```Terminal 4 frequency setting bias frequency```	0 to 590 Hz	0 Hz
1455	Keepalive time [E800-(SC)E]	1 to 7200 s	60 s	$(904){ }^{*} 5$			
1456	Network diagnosis selection [E800-(SC)E]	0 to 2, 9999	9999	$(904)^{*} 5$	Terminal 4 frequency setting bias	0\% to 300\%	20\%
				$\begin{gathered} 126 \\ (905)^{* 5} \end{gathered}$	Terminal 4 frequency setting gain frequency	0 to 590 Hz	Gr.1: 60 Hz Gr.2: 50 Hz
1457	Extended setting for Ethernet signal loss detection function selection[E800-(SC)E]	$\begin{aligned} & 0 \text { to } 3,8888 \text {, } \\ & 9999 \end{aligned}$	9999				
				$\begin{gathered} \text { C7 } \\ (905)^{* 5} \end{gathered}$	Terminal 4 frequency setting gain	0\% to 300\%	100\%
1480	Load characteristics measurement mode	$\begin{aligned} & 0,1(2 \text { to } 5,81 \\ & \text { to } 85) \end{aligned}$	0	$\begin{gathered} \text { C38 } \\ (932)^{*} 5 \end{gathered}$	Terminal 4 bias command (torque/ magnetic flux)	0\% to 400\%	0\%
1481	Load characteristics load reference 1	$\begin{aligned} & 0 \% \text { to } 400 \% \text {, } \\ & 8888,9999 \end{aligned}$	9999	$\begin{gathered} \text { C39 } \\ (932)^{* 5} \end{gathered}$	Terminal 4 bias (torque/magnetic flux)	0\% to 300\%	0\%
1482	Load characteristics load reference 2	$\begin{aligned} & 0 \% \text { to } 400 \% \text {, } \\ & 8888,9999 \end{aligned}$	9999				
1483	Load characteristics load reference 3	0\% to 400\%, 8888, 9999	9999	$\begin{gathered} \text { C40 } \\ (933)^{*} \end{gathered}$	Terminal 4 gain command (torque/ magnetic flux)	0\% to 400\%	150\%
1484	Load characteristics load reference 4	$\begin{aligned} & 0 \% \text { to } 400 \% \text {, } \\ & 8888,9999 \end{aligned}$	9999	$\begin{gathered} \text { C41 } \\ (933)^{* 5} \end{gathered}$	Terminal 4 gain (torque/magnetic flux)	0\% to 300\%	100\%
1485	Load characteristics	$\begin{aligned} & 0 \% \text { to } 400 \% \text {, } \\ & 8888,9999 \end{aligned}$	9999				
1485	load reference 5			$\begin{gathered} \text { C42 } \\ (934)^{*} 5 \end{gathered}$	PID display bias coefficient	0 to 500, 9999	9999
1486	Load characteristics maximum frequency	0 to 590 Hz	Gr.1: 60 Hz   Gr.2: 50 Hz				
1487	Load characteristics minimum frequency	0 to 590 Hz	6 Hz	$\begin{gathered} \text { C43 } \\ (934)^{*} 5 \end{gathered}$	PID display bias analog value	0\% to 300\%	20\%


Para-   meter	Name	Setting Range	Initial   Value *1
C44   $(\mathbf{9 3 5})^{*}$	PID display gain   coefficient	0 to 500,9999	9999
C45   $\mathbf{( 9 3 5 ) ~}^{*} 5$	PID display gain   analog value	$0 \%$ to $300 \%$	$100 \%$
PR.CL	Parameter clear	$(0), 1$	0
ALLC	All parameter clear	$(0), 1$	0
ER.CL	Fault history clear	$(0), 1$	0
PR.CH	Initial value change   list	-	0
PM	PM parameter   initialization	0	-
AUTO	Automatic parameter   setting	-	0
PR.MD	Group parameter   setting	$(0), 1,2$	0

*1 Gr. 1 and Gr. 2 are the parameter initial value groups.
*2 Differs depending on the capacity. (see Instruction Manual (Function) for more details).
*3 The set value is read/written in 2-word (32-bit) units when the PLC function is used for parameter reading/writing.
*4 The setting is available only when a Vector control compatible option is installed.
*5 On the LCD operation panel used as the command source, the parameter number in parentheses appears instead of that starting with the letter C.
*6 For the Ethernet model and the safety communication model, the setting is available only when the FR-A8AY is installed.
*7 Available when the PLC function is enabled. (Pr. 313 to Pr. 315 are always available for settings in the Ethernet model and the safety communication model.)
*8 For the standard model, the setting is available only when a communication option is installed.

## 7 INVERTER FAULT AND ALARM INDICATIONS

When the inverter detects a fault, depending on the nature of the fault, the operation panel displays an error message or warning, or a protective function is activated to shut off the inverter output.
When any fault occurs, take an appropriate corrective action, then reset the inverter, and resume the operation. Restarting the operation without a reset may break or damage the inverter.

When a protective function is activated, note the following points.

- Fault output signal $\qquad$ ..Opening the magnetic contactor (MC) provided on the input side of the inverter at a fault occurrence shuts off the control power to the inverter, therefore, the fault output will not be retained.
- Fault or alarm indication $\qquad$ When a protective function is activated, the operation panel displays a fault indication.
- Operation restart method .................While a protective function is activated, the inverter output is kept shutoff. Reset the inverter to restart the operation.

Inverter fault or alarm indications are categorized as follows.

- Error Message

A message regarding operational fault or setting fault on the operation panel is displayed. The inverter output is not shut off.

- Warning

The inverter output is not shut off even when a warning is displayed. However, failure to take appropriate measures will lead to a fault.

- Alarm

The inverter output is not shut off. An Alarm (LF) signal can also be output with a parameter setting.

- Fault

When a protective function is activated, the inverter output is shut off and a Fault (ALM) signal is output.

## NOTES

- The last 10 faults can be displayed on the operation panel. (Fault history) (For operation, refer to page 38.)


## 7．1 Reset method of protective function

The inverter can be reset by performing any of the following operations．Note that the internal thermal integrated value of the electronic thermal relay function and the number of retries are cleared（erased）by resetting the inverter． Inverter recovers about 1s after reset is cancelled．

Three different methods can be used to reset an inverter．
－Using the operation panel，press the STOP／RESET key to reset the inverter．
（This may only be performed when a fault occurs．）

－Switch OFF the power once，then switch it ON again after the indicator of the operation panel turns OFF．

－Turn ON the reset signal（RES）for more than 0.1 s ．（If the RES signal is kept ON， ＂Err．＂appears（flickers）to indicate that the inverter is in a reset status．）


## CAUTION

OFF status of the start signal must be confirmed before resetting the inverter fault．Resetting inverter fault with the start signal ON restarts the motor suddenly．This may cause injury．

## 7．2 List of alarm display

Operation panel indication			Name	Data code
	ジロージ	HOLD	Operation panel lock	－
	－Eíciol	LOCD	Password locked	－
	$\begin{array}{ll} E & 1 \\ E & \text { to } \\ E & 1 \end{array}$	$\underset{\text { Er4 }}{\text { Er1 to }}$	Parameter write error	－
	$E F$	Err．	Error	－
	－1818	OLC	Stall prevention（overcurrent）	$\begin{array}{\|c\|} \hline 1 \\ (\mathrm{HO} 1) \\ \hline \end{array}$
	臬1－1	OLV	Stall prevention（overvoltage）	$\begin{array}{\|c\|} \hline 2 \\ (\mathrm{HO}) \\ \hline \end{array}$
	$-i$	RB	Regenerative brake pre－ alarm	$\begin{gathered} 3 \\ (\mathrm{HOO}) \end{gathered}$
	1－1－1	TH	Electronic thermal relay function pre－alarm	$\begin{array}{\|c\|} \hline 4 \\ (\mathrm{HO} 4) \end{array}$
	$\mathrm{Fi}_{0}$	PS	PU stop	$\left\lvert\, \begin{gathered} 6 \\ (\mathrm{H} 06) \end{gathered}\right.$


| Operation panel indication | Name | Data <br> code |  |
| :--- | :--- | :--- | :--- | :---: |
|  | MT | Maintenance timer | 8 <br> $(\mathrm{H} 08)$ |


Operation panel indication			Name	Data code
㡲	EM	FN	Fan alarm	-
$\begin{aligned} & \stackrel{\rightharpoonup}{\vec{~}} \\ & \stackrel{\pi}{4} \end{aligned}$	E.Eİ	E.OC1	Overcurrent trip during acceleration	$\begin{array}{\|c\|} \hline 16 \\ (\mathrm{H} 10) \end{array}$
	E.EIE	E.OC2	Overcurrent trip during constant speed	$\begin{array}{\|c\|} \hline 17 \\ (\mathrm{H} 11) \end{array}$
	E.Eİ	E.OC3	Overcurrent trip during deceleration or stop	$\begin{array}{\|c\|} \hline 18 \\ (\mathrm{H} 12) \end{array}$
	$E . E 101$	E.OV1	Regenerative overvoltage trip during acceleration	$\begin{array}{\|c\|} \hline 32 \\ (\mathrm{H} 20) \\ \hline \end{array}$
	E.E120	E.OV2	Regenerative overvoltage trip during constant speed	$\begin{array}{\|c\|} \hline 33 \\ (\mathrm{H} 21) \\ \hline \end{array}$
	E.E12,	E.OV3	Regenerative overvoltage trip during deceleration or stop	$\begin{array}{\|c\|} \hline 34 \\ (H 22) \\ \hline \end{array}$
$\begin{array}{\|l} \stackrel{\rightharpoonup}{\vec{~}} \\ \stackrel{\rightharpoonup}{\pi} \end{array}$	Ei Mi	E.THT	Inverter overload trip (electronic thermal relay function)	$\begin{gathered} 48 \\ (\mathrm{H} 30) \end{gathered}$
	Ei Míi	E.THM	Motor overload trip (electronic thermal relay function)	$\begin{gathered} 49 \\ (H 31) \end{gathered}$
	EAF	E.FIN	Heat sink overheat	$\begin{gathered} 64 \\ (\mathrm{H} 40) \end{gathered}$
	Eílioi	E.UVT	Undervoltage	$\begin{array}{\|c\|} \hline 81 \\ \text { (H51) } \\ \hline \end{array}$
	E.	E.ILF	Input phase loss	$\begin{gathered} \hline 82 \\ (H 52) \end{gathered}$
	$E . E 1 i^{-}$	E.OLT	Stall prevention stop	$\begin{array}{\|c\|} \hline 96 \\ (\mathrm{H} 60) \end{array}$
	EIEII	E.SOT	Loss of synchronism detection	$\begin{array}{\|c\|} \hline 97 \\ \text { (H61) } \end{array}$
	Ei 110	E.LUP	Upper limit fault detection	$\begin{array}{\|c\|} \hline 98 \\ (\mathrm{H} 62) \\ \hline \end{array}$
	Ei Eíi	E.LDN	Lower limit fault detection	99 $(\mathrm{H} 63)$
	$E: E$	E.BE	Brake transistor alarm detection	$\begin{array}{\|c\|} \hline 112 \\ (H 70) \end{array}$
	$\begin{aligned} & E 5 \\ & E .15 \end{aligned}$	E.GF	Output side earth (ground) fault overcurrent	$\begin{array}{\|c\|} \hline 128 \\ (H 80) \end{array}$
	Ei E	E.LF	Output phase loss	$\begin{gathered} \hline 129 \\ \text { (H81) } \\ \hline \end{gathered}$
	$E . E i+1 i^{\circ}$	E.OHT	External thermal relay operation	$\begin{array}{\|c\|} \hline 144 \\ \text { (H90) } \\ \hline \end{array}$
	E.EIF	E.PTC	PTC thermistor operation	$\begin{array}{\|c\|} \hline 145 \\ \text { (H91) } \\ \hline \end{array}$
	E.Eİ	E.OPT	Option fault	$\begin{array}{\|c\|} \hline 160 \\ \text { (HAO) } \end{array}$
	E.Eİ	E.OP1	Communication option fault	$\begin{array}{\|c\|} \hline 161 \\ \text { (HA1) } \\ \hline \end{array}$
	E. 15	E. 16	User definition error by the PLC function	$\begin{array}{\|c\|} \hline 164 \\ \text { (HA4) } \\ \hline \end{array}$
	$E \quad 17$	E. 17		$\begin{array}{\|c\|} \hline 165 \\ \text { (HA5) } \end{array}$
	E. 18	E. 18		$\begin{array}{\|c\|} \hline 166 \\ \text { (HA6) } \\ \hline \end{array}$
	E. 12	E. 19		$\begin{array}{\|c\|} \hline 167 \\ \text { (HA7) } \end{array}$
	E.Eİ	E. 20		$\begin{array}{\|c\|} \hline 168 \\ \text { (HA8) } \\ \hline \end{array}$
	EFE	E.PE	Parameter storage device fault (control circuit board)	$\begin{array}{\|c\|} \hline 176 \\ \text { (HBO) } \end{array}$
	EFIE	E.PUE	PU disconnection	$\begin{array}{\|c\|} \hline 177 \\ \text { (HB1) } \\ \hline \end{array}$
	ErEi	E.RET	Retry count excess	$\begin{gathered} 178 \\ \text { (HB2) } \end{gathered}$


Operation panel indication			Name	Data code
$\begin{aligned} & \stackrel{\rightharpoonup}{\vec{~}} \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$	EFEE	E.PE2	Parameter storage device fault (main circuit board)	$\begin{array}{\|c\|} \hline 179 \\ \text { (HB3) } \end{array}$
	EIEFí	E.CPU	CPU fault	$\begin{array}{\|c\|} \hline 192 \\ (H C O) \end{array}$
	$E D E 1 E$	E.CDO	Abnormal output current detection	$\begin{gathered} \hline 196 \\ (\mathrm{HC} 4) \end{gathered}$
	E. Ein	E.IOH	Inrush current limit circuit fault	$\begin{array}{\|c\|} \hline 197 \\ (H C 5) \end{array}$
	E.EIE	E.AIE	Analog input fault	$\begin{array}{\|c\|} \hline 199 \\ (\mathrm{HC} 7) \end{array}$
	Eitioiz	E.USB	USB communication fault	$\begin{array}{\|c\|} \hline 200 \\ (\mathrm{HC} 8) \end{array}$
	$E \mathrm{ESE}$	E.SAF	Safety circuit fault	$\begin{array}{\|c\|} \hline 201 \\ \hline \text { (HC9) } \\ \hline \end{array}$
	E.E1	E.OS	Overspeed occurrence	$\begin{array}{\|c\|} \hline 208 \\ (\mathrm{HDO}) \\ \hline \end{array}$
	E.EIE1	E.OSD	Speed deviation excess detection	$\begin{array}{\|c\|} \hline 209 \\ (H D 1) \end{array}$
	E.ifi	E.MB1	Brake sequence fault	$\begin{array}{\|c\|} \hline 213 \\ \text { (HD5) } \end{array}$
	E.1才E	E.MB2		$\begin{array}{\|c\|} \hline 214 \\ \text { (HD6) } \\ \hline \end{array}$
	E. $511=0$	E.MB3		$\begin{array}{\|c\|} \hline 215 \\ \text { (HD7) } \end{array}$
	EITEI	E.MB4		$\begin{array}{\|c\|} \hline 216 \\ \text { (HD8) } \end{array}$
	$\begin{gathered} E \\ E .15 \\ \hline 15 \end{gathered}$	E.MB5		$\begin{array}{\|c\|} \hline 217 \\ \text { (HD9) } \\ \hline \end{array}$
	$E: I E$	E.MB6		$\begin{array}{\|c\|} \hline 218 \\ (\mathrm{HDA}) \end{array}$
	EiIEI	E.MB7		$\begin{array}{\|c\|} \hline 219 \\ (\mathrm{HDB}) \end{array}$
	$E \mathrm{E}$ E1	E.PID	PID signal fault	$\begin{array}{\|c\|} \hline 230 \\ (\mathrm{HE} 6) \\ \hline \end{array}$
	EEIG	E.EHR	Ethernet communication fault	$\begin{array}{\|c\|} \hline 231 \\ \text { (HE7) } \end{array}$
	Eition	E.CMB	Board combination fault	$\left\lvert\, \begin{gathered} 232 \\ \text { (HE8) } \end{gathered}\right.$
	$E .1$	E. 1	Option fault	$\begin{array}{\|c\|} \hline 241 \\ \text { (HF1) } \end{array}$
	$E$ E	E. 5		$\begin{array}{\|c\|} \hline 245 \\ \text { (HF5) } \\ \hline \end{array}$
	$E$ E	E. 6	CPU fault	$\begin{array}{\|c\|} \hline 246 \\ \text { (HF6) } \\ \hline \end{array}$
	E.	E. 7		$\begin{array}{\|c\|} \hline 247 \\ \text { (HF7) } \end{array}$
	E. 110	E. 10	Inverter output fault	$\begin{array}{\|c\|} \hline 250 \\ \text { (HFA) } \end{array}$
	$E \quad 101$	E. 11	Opposite rotation deceleration fault	$\begin{array}{\|c\|} \hline 251 \\ (\mathrm{HFB}) \\ \hline \end{array}$
	E. 12	E. 13	Internal circuit fault	$\begin{array}{\|c\|} \hline 253 \\ \text { (HFD) } \end{array}$
$\begin{aligned} & \stackrel{\varrho}{0} \\ & \stackrel{5}{\square} \end{aligned}$	$E-$	E---	Faults history	-
	E.	-	No fault history	-
	1-1	rd	Backup in progress	-
	1-15	WR	Restoration in progress	-

## 8 SPECIFICATIONS

### 8.1 Rating

### 8.1.1 Three-phase 200 V power supply

Model FR-E820- $\square$				0008	0015	0030	0050	0080	0110	0175	0240	0330	0470	0600	0760	0900
				0.1K	0.2K	0.4K	0.75K	1.5K	2.2K	3.7K	5.5K	7.5K	11K	15K	18.5K	22K
Applicable motor capacity [kW] *1		LD		0.2	0.4	0.75	1.1	2.2	3.0	5.5	7.5	11	15.0	18.5	22.0	30.0
		ND		0.1	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11.0	15.0	18.5	22.0
Rated capacity $[\mathrm{kVA}]^{*}$		LD		0.5	0.8	1.4	2.4	3.8	4.8	7.8	12.0	15.9	22.3	27.5	35.1	45.8
		ND		0.3	0.6	1.2	2.0	3.2	4.4	7.0	9.6	13.1	18.7	23.9	30.3	35.9
$\begin{array}{\|l} \text { 言 } \\ \text { 2 } \end{array}$	Rated current [A] *7	LD		$\begin{aligned} & \hline 1.3 \\ & (1.1) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & (1.7) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 3.5 \\ (3.0) \\ \hline \end{array}$	$\begin{aligned} & \hline 6.0 \\ & (5.1) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 9.6 \\ (8.2) \\ \hline \end{array}$	$\begin{aligned} & 12.0 \\ & (10.2) \\ & \hline \end{aligned}$	$\begin{array}{\|l} 19.6 \\ (16.7) \end{array}$	$\begin{array}{\|l} \hline 30.0 \\ (25.5) \end{array}$	$\begin{array}{\|l} \hline 40.0 \\ (34.0) \\ \hline \end{array}$	$\begin{aligned} & 56.0 \\ & (47.6) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 69.0 \\ (58.7) \\ \hline \end{array}$	$\begin{array}{\|l} \hline 88.0 \\ (74.8) \end{array}$	$\begin{aligned} & 115.0 \\ & (97.8) \\ & \hline \end{aligned}$
		ND		$\begin{aligned} & 0.8 \\ & (0.8) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.5 \\ (1.4) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 3.0 \\ (2.5) \end{array}$	$\begin{aligned} & 5.0 \\ & (4.1) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 8.0 \\ (7.0) \end{array}$	$\begin{array}{\|l\|l\|} \hline 11.0 \\ (10.0) \\ \hline \end{array}$	$\begin{aligned} & 17.5 \\ & (16.5) \end{aligned}$	$\begin{aligned} & \hline 24.0 \\ & (23.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 33.0 \\ (31.0) \end{array}$	$\begin{aligned} & 47.0 \\ & (44.0) \end{aligned}$	$\begin{aligned} & \hline 60.0 \\ & (57.0) \end{aligned}$	$\begin{array}{\|l} \hline 76.0 \\ (72.0) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 90.0 \\ (86.0) \end{array}$
	Overload current rating *3	LD		$120 \% 60 \mathrm{~s}, 150 \% 3 \mathrm{~s}$ (inverse-time characteristics) at surrounding air temperature of $50^{\circ} \mathrm{C}$												
		ND		$150 \% 60 \mathrm{~s}, 200 \% 3 \mathrm{~s}$ (inverse-time characteristics) at surrounding air temperature of $50^{\circ} \mathrm{C}$												
	Rated voltage *4			Three-phase 200 to 240 V												
	Regenerative braking	Brake transistor		Not used		Built-in										
		Maximum brake torque (ND reference) ${ }^{* 5}$		150\%		100\%		50\%	20\%							
	Rated input AC (DC) voltage/frequency			Three-phase 200 to $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}\left(283\right.$ to $339 \mathrm{VDC}^{* 9}$ )												
	Permissible AC (DC) voltage fluctuation			170 to $264 \mathrm{~V}, 50 / 60 \mathrm{~Hz}\left(240\right.$ to $373 \mathrm{~V} \mathrm{CC}^{* 9}$ )												
	Permissible frequency fluctuation			$\pm 5 \%$												
	Rated input current [A] *8	LD	Without DC reactor	1.9	3.0	5.1	8.2	13.0	16.0	26.0	37.0	49.0	74.3	90.5	112.9	139.5
			With DC reactor	1.3	2.0	3.5	6.0	9.6	12.0	20.0	30.0	40.0	63.6	79.9	99.0	114.3
		ND	Without DC reactor	1.4	2.3	4.5	7.0	11.0	15.0	23.0	30.0	41.0	56.0	69.0	88.0	115.0
			With DC reactor	0.8	1.5	3.0	5.0	8.0	11.0	17.5	24.0	33.0	47.0	60.0	76.0	90.0
	Power supply capacity $[\mathrm{kVA}]{ }^{*} 6$	LD	Without DC reactor	0.7	1.1	1.9	3.1	4.8	6.2	9.7	14.0	19.0	29.0	35.0	43.0	54.0
			With DC reactor	0.5	0.8	1.3	2.3	3.7	4.6	7.5	11.0	15.0	25.0	31.0	38.0	44.0
		ND	Without DC reactor	0.5	0.9	1.7	2.7	4.1	5.7	8.8	12.0	16.0	21.0	26.0	34.0	44.0
			With DC reactor	0.3	0.6	1.1	1.9	3.0	4.2	6.7	9.1	13.0	18.0	23.0	29.0	34.0
Protective structure (IEC 60529) ${ }^{* 7}$				Open type (IP20)												
Cooling system				Natural		Forced air cooling										
Weight [kg]				0.5	0.5	0.7	1.0	1.4	1.4	1.8	3.3	3.3	5.4	5.6	11.0	11.0

*1 The applicable motor capacity indicated is the maximum capacity applicable for use of the Mitsubishi Electric 4-pole standard efficiency motor.
To drive a Mitsubishi Electric high-performance energy-saving motor, use the 0.75 K inverter for a 1.1 kW motor, or 2.2 K inverter for a 3 kW motor.
*2 The rated output capacity is the value with respect to 230 V output voltage.
*3 The percentage of the overload current rating is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter and motor to return to or below the temperatures under 100\% load.
*4 The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. The maximum point of the voltage waveform at the output side of the inverter is approximately the power supply voltage multiplied by $\sqrt{2}$.
*5 The amount of braking torque is the average short-term torque (which varies depending on motor loss) that is generated when a motor decelerates in the shortest time by itself from 60 Hz . It is not continuous regenerative torque. The average deceleration torque becomes lower when a motor decelerates from a frequency higher than the base frequency. The inverter is not equipped with a builtin brake resistor. Use an option brake resistor for an operation with large regenerative power (not available for the FR-E8200008(0.1K) and FR-E820-0015(0.2K)). The brake unit (FR-BU2) can be also used.
*6 The power supply capacity varies with the value of the input power impedance (including those of the input reactor and cables).
${ }^{* 7}$ The value in parentheses is the rated output current when the low acoustic noise operation is performed with the surrounding air temperature exceeding $40^{\circ} \mathrm{C}$ while 2 kHz or higher value is selected in Pr. 72 PWM frequency selection.
*8 The rated input current is the value at a rated output voltage. The input power impedances (including those of the input reactor and cables) affect the value.
*9 Connect the DC power supply to the inverter terminals $\mathrm{P} /+$ and $\mathrm{N} /$-. Connect the positive terminal of the power supply to terminal $\mathrm{P} /+$ and the negative terminal to terminal $\mathrm{N} /-$
When the energy is regenerated from the motor, the voltage between terminals $\mathrm{P} /+$ and $\mathrm{N} /-$ may temporarily rise to 415 V or more. Use a DC power supply resistant to the regenerative voltage/energy. When a power supply that cannot resist the regenerative voltage/ energy is used, connect a reverse current prevention diode in series
Powering ON produces up to four times as large current as the inverter rated current. Prepare a DC power supply resistant to the inrush current at power ON, although an inrush current limit circuit is provided in the FR-E800 series inverter.
The power capacity depends on the output impedance of the power supply. Select a power capacity around the AC power supply capacity.

### 8.1.2 Three-phase 400 V power supply

Model FR-E840- $\square$				0016	0026	0040	0060	0095	0120	0170	0230	0300	0380	0440
				0.4K	0.75K	1.5K	2.2K	3.7K	5.5K	7.5K	11K	15K	18.5K	22K
Applicable motor capacity [kW] ${ }^{* 1}$		LD		0.75	1.5	2.2	3.0	5.5	7.5	11.0	15.0	18.5	22.0	30.0
		ND		0.4	0.75	1.5	2.2	3.7	5.5	7.5	11.0	15.0	18.5	22.0
Rated capacity $\left[\mathrm{kVA}{ }^{*}{ }^{2}\right.$		LD		1.6	2.7	4.2	5.3	8.5	13.3	17.5	26.7	31.2	34.3	45.7
		ND		1.2	2.0	3.0	4.6	7.2	9.1	13.0	17.5	22.9	29.0	33.5
	Rated current [A] *7	LD		$\begin{aligned} & 2.1 \\ & (1.8) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 3.5 \\ (3.0) \\ \hline \end{array}$	$\begin{aligned} & 5.5 \\ & (4.7) \end{aligned}$	$\begin{array}{\|l} \hline 6.9 \\ (5.9) \\ \hline \end{array}$	$\begin{aligned} & 11.1 \\ & (9.4) \end{aligned}$	$\begin{aligned} & 17.5 \\ & (14.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 23.0 \\ & (19.6) \end{aligned}$	$\begin{array}{\|l} \hline 35.0 \\ (29.8) \end{array}$	$\begin{array}{\|l\|} \hline 41.0 \\ (34.9) \end{array}$	$\begin{aligned} & \hline 45.0 \\ & (38.3) \end{aligned}$	$\begin{aligned} & \hline 60.0 \\ & (51.0) \end{aligned}$
		ND		$\begin{array}{\|l\|} \hline 1.6 \\ (1.4) \\ \hline \end{array}$	$\begin{aligned} & \hline 2.6 \\ & (2.2) \end{aligned}$	$\begin{aligned} & \hline 4.0 \\ & (3.8) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 6.0 \\ (5.4) \end{array}$	$\begin{aligned} & \hline 9.5 \\ & (8.7) \end{aligned}$	12.0	17.0	23.0	30.0	38.0	44.0
$\frac{0}{2}$	Overload current rating *3	LD		$120 \% 60 \mathrm{~s}, 150 \% 3 \mathrm{~s}$ (inverse-time characteristics) at surrounding air temperature of $50^{\circ} \mathrm{C}$										
		ND		$150 \% 60 \mathrm{~s}, 200 \% 3 \mathrm{~s}$ (inverse-time characteristics) at surrounding air temperature of $50^{\circ} \mathrm{C}$										
Rated voltage *4				Three-phase 380 to 480 V										
	Regenerative braking	Brake transistor		Built-in										
		Maximum brake torque (ND reference) ${ }^{* 5}$				50\%	20\%							
Rated input AC (DC) voltage/frequency				Three-phase 380 to $480 \mathrm{~V}, 50 / 60 \mathrm{~Hz}\left(537\right.$ to $679 \mathrm{VDC}^{* 9}$ )										
Permissible AC (DC) voltage fluctuation				323 to $528 \mathrm{~V}, 50 / 60 \mathrm{~Hz}\left(457\right.$ to $740 \mathrm{VDC}^{* 9}$ )										
Permissible frequency fluctuation				$\pm 5 \%$										
	Rated input current $[\mathrm{A}]^{* 8}$	LD	Without DC reactor	3.3	6.0	8.9	11.0	16.0	25.0	32.0	46.7	54.2	59.1	75.6
$\left\|\begin{array}{l} \overline{0} \\ \hline 3 \end{array}\right\|$			With DC reactor	2.1	3.5	5.5	6.9	11.0	18.0	23.0	32.1	41.0	50.8	57.3
$\begin{aligned} & \bar{\omega} \\ & \mathbf{\omega} \end{aligned}$		ND	Without DC reactor	2.7	4.4	6.7	9.5	14.0	18.0	25.0	35.0	41.0	45.0	60.0
$0$			With DC reactor	1.6	2.6	4.0	6.0	9.5	12.0	17.0	23.0	30.0	38.0	44.0
	Power supply capacity$[\mathrm{kVA}] * 6$	LD	Without DC reactor	2.5	4.5	6.8	8.2	12.0	19.0	25.0	36.0	42.0	45.0	58.0
			With DC reactor	1.6	2.7	4.2	5.3	8.5	13.0	18.0	25.0	32.0	39.0	44.0
		ND	Without DC reactor	2.1	3.4	5.1	7.2	11.0	14.0	19.0	27.0	31.0	34.0	46.0
			With DC reactor	1.2	2.0	3.0	4.6	7.2	9.1	13.0	18.0	23.0	29.0	34.0
Protective structure (IEC 60529) ${ }^{\text {*7 }}$				Open type (IP20)										
Cooling system				Natural		Forced air cooling								
Weight [kg]				1.2	1.2	1.4	1.8	1.8	2.4	2.4	4.8	4.9	11.0	11.0

*1 The applicable motor capacity indicated is the maximum capacity applicable for use of the Mitsubishi Electric 4-pole standard efficiency motor.
To drive a Mitsubishi Electric high-performance energy-saving motor, use the 2.2 K inverter for a 3 kW motor.
*2 The rated output capacity is the value with respect to 440 V output voltage.
*3 The percentage of the overload current rating is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter and motor to return to or below the temperatures under 100\% load.
*4 The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. The maximum point of the voltage waveform at the output side of the inverter is approximately the power supply voltage multiplied by $\sqrt{2}$.
*5 The amount of braking torque is the average short-term torque (which varies depending on motor loss) that is generated when a motor decelerates in the shortest time by itself from 60 Hz . It is not continuous regenerative torque. The average deceleration torque becomes lower when a motor decelerates from a frequency higher than the base frequency. The inverter is not equipped with a builtin brake resistor. Use an option brake resistor for an operation with large regenerative power. The brake unit (FR-BU2) can be also used.
*6 The power supply capacity varies with the value of the input power impedance (including those of the input reactor and cables).
${ }^{* 7}$ The value in parentheses is the rated output current when the low acoustic noise operation is performed with the surrounding air temperature exceeding $40^{\circ} \mathrm{C}$ while 2 kHz or higher value is selected in Pr. 72 PWM frequency selection.
*8 The rated input current is the value at a rated output voltage. The input power impedances (including those of the input reactor and cables) affect the value.
*9 Connect the DC power supply to the inverter terminals $\mathrm{P} /+$ and $\mathrm{N} /$-. Connect the positive terminal of the power supply to terminal $\mathrm{P} /+$ and the negative terminal to terminal $\mathrm{N} /$ -
When the energy is regenerated from the motor, the voltage between terminals $\mathrm{P} /+$ and $\mathrm{N} /$ - may temporarily rise to 830 V or more. Use a DC power supply resistant to the regenerative voltage/energy. When a power supply that cannot resist the regenerative voltage/ energy is used, connect a reverse current prevention diode in series.
Powering ON produces up to four times as large current as the inverter rated current. Prepare a DC power supply resistant to the inrush current at power ON, although an inrush current limit circuit is provided in the FR-E800 series inverter.
The power capacity depends on the output impedance of the power supply. Select a power capacity around the AC power supply capacity.

### 8.1.3 Single-phase 200 V power supply

Model FR-E820S- $\square$				0008	0015	0030	0050	0080	0110
				0.1K	0.2K	0.4K	0.75K	1.5K	2.2K
Applicable motor capacity [kW] *1		ND		0.1	0.2	0.4	0.75	1.5	2.2
$\begin{aligned} & \text { 言 } \\ & \vdots \\ & 0 \end{aligned}$	Rated capacity $\left[\mathrm{kVA}{ }^{*}{ }^{*}\right.$	ND		0.3	0.6	1.2	2.0	3.2	4.4
	Rated current [A] ${ }^{* 7}$	ND		$\begin{array}{\|l\|} \hline 0.8 \\ (0.8) \end{array}$	$\begin{aligned} & 1.5 \\ & (1.4) \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & (2.5) \end{aligned}$	$\begin{aligned} & 5.0 \\ & (4.1) \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & (7.0) \end{aligned}$	$\begin{aligned} & \hline 11.0 \\ & (10.0) \end{aligned}$
	Overload current rating *3	ND		$150 \% 60 \mathrm{~s}, 200 \% 3 \mathrm{~s}$ (inverse-time characteristics) at surrounding air temperature of $50^{\circ} \mathrm{C}$					
	Rated voltage *4			Single-phase 200 to 240 V					
	Regenerative braking	Brake transistor		Not used		Built-in			
		Maximum brake torque *5		150\%		100\%		50\%	20\%
	Rated input AC voltage/frequency			Single-phase 200 to $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$					
	Permissible AC voltage fluctuation			170 to $264 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$					
	Permissible frequency fluctuation			$\pm 5 \%$					
	Rated input current [A] * 8	ND	Without DC reactor	2.3	4.1	7.9	11.2	17.9	25.0
			With DC reactor	1.4	2.6	5.2	8.7	13.9	19.1
	Power supply capacity [kVA] ${ }^{*} 6$	ND	Without DC reactor	0.5	0.9	1.7	2.5	3.9	5.5
			With DC reactor	0.3	0.6	1.1	1.9	3.0	4.2
Protective structure (IEC 60529) ${ }^{* 7}$				Open type (IP20)					
Cooling system				Natural				Forced air cooling	
Weight [kg]				0.5	0.5	0.8	1.3	1.4	1.9

*1 The applicable motor capacity indicated is the maximum capacity applicable for use of the Mitsubishi Electric 4-pole standard efficiency motor.
*2 The rated output capacity is the value with respect to 230 V output voltage.
*3 The percentage of the overload current rating is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter and motor to return to or below the temperatures under 100\% load. For single-phase power input model, the bus voltage decreases to power failure detection level and the load of $100 \%$ or higher may not be available if the automatic restart after instantaneous power failure function ( Pr .57 ) or the power failure stop function ( Pr .261) is set and power supply voltage is low while the load increases.
*4 The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. The maximum point of the voltage waveform at the output side of the inverter is approximately the power supply voltage multiplied by $\sqrt{2}$.
*5 The amount of braking torque is the average short-term torque (which varies depending on motor loss) that is generated when a motor decelerates in the shortest time by itself from 60 Hz . It is not continuous regenerative torque. The average deceleration torque becomes lower when a motor decelerates from a frequency higher than the base frequency. The inverter is not equipped with a builtin brake resistor. Use an option brake resistor for an operation with large regenerative power (not available for the FR-E820S0008(0.1K) and FR-E820S-0015(0.2K)). The brake unit (FR-BU2) can be also used.
*6 The power supply capacity varies with the value of the input power impedance (including those of the input reactor and cables).
${ }^{* 7}$ The value in parentheses is the rated output current when the low acoustic noise operation is performed with the surrounding air temperature exceeding $40^{\circ} \mathrm{C}$ while 2 kHz or higher value is selected in Pr. 72 PWM frequency selection.
*8 The rated input current is the value at a rated output voltage. The input power impedances (including those of the input reactor and cables) affect the value.

### 8.2 Outline dimensions

Standard model


Ethernet model /
Safety communication model

(Unit: mm)

	Inverter Type	W	W1	H	H1	D	C
0   0   0   0   0   0   0   0   0   0  	$\begin{aligned} & \text { FR-E820S-0008(0.1K) } \\ & \text { FR-E820S-0008(0.1K)E } \\ & \text { FR-E820S-0008(0.1K)SCE } \end{aligned}$	68	56	128	118	80.5	5
	$\begin{aligned} & \text { FR-E820S-0015(0.2K) } \\ & \text { FR-E820S-0015(0.2K)E } \\ & \text { FR-E820S-0015(0.2K)SCE } \end{aligned}$					80.5	
	FR-E820S-0030(0.4K) FR-E820S-0030(0.4K)E FR-E820S-0030(0.4K)SCE					142.5	
	FR-E820S-0050(0.75K) FR-E820S-0050(0.75K)E FR-E820S-0050(0.75K)SCE	108	96			135	
	$\begin{aligned} & \text { FR-E820S-0080(1.5K) } \\ & \text { FR-E820S-0080(1.5K)E } \\ & \text { FR-E820S-0080(1.5K)SCE } \end{aligned}$	108	96			161	
	$\begin{aligned} & \text { FR-E820S-0110(2.2K) } \\ & \text { FR-E820S-0110(2.2K)E } \\ & \text { FR-E820S-0110(2.2K)SCE } \end{aligned}$	140	128			142.5	


	Inverter Type	W	W1	H	H1	D	C
$\begin{aligned} & \mathscr{0} \\ & \frac{\pi}{0} \\ & \text { 己 } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \hline \text { FR-E820-0008(0.1K) } \\ & \text { FR-E820-0008(0.1K)E } \\ & \text { FR-E820-0008(0.1K)SCE } \end{aligned}$	68	56	128	118	80.5	5
	$\begin{aligned} & \hline \text { FR-E820-0015(0.2K) } \\ & \text { FR-E820-0015(0.2K)E } \\ & \text { FR-E820-0015(0.2K)SCE } \end{aligned}$						
	$\begin{aligned} & \hline \text { FR-E820-0030(0.4K) } \\ & \text { FR-E820-0030(0.4K)E } \\ & \text { FR-E820-0030(0.4K)SCE } \end{aligned}$					112.5	
	$\begin{aligned} & \hline \text { FR-E820-0050(0.75K) } \\ & \text { FR-E820-0050(0.75K)E } \\ & \text { FR-E820-0050(0.75K)SCE } \end{aligned}$					132.5	
	FR-E820-0080(1.5K) FR-E820-0080(1.5K)E FR-E820-0080(1.5K)SCE	108	96			135.5	
	$\begin{aligned} & \text { FR-E820-0110(2.2K) } \\ & \text { FR-E820-0110(2.2K)E } \\ & \text { FR-E820-0110(2.2K)SCE } \end{aligned}$						
	$\begin{aligned} & \hline \text { FR-E820-0175(3.7K) } \\ & \text { FR-E820-0175(3.7K)E } \\ & \text { FR-E820-0175(3.7K)SCE } \end{aligned}$	140	128			142.5	
	$\begin{aligned} & \text { FR-E820-0240(5.5K) } \\ & \text { FR-E820-0240(5.5K)E } \\ & \text { FR-E820-0240(5.5K)SCE } \end{aligned}$	180	164	260	244	165	6
	$\begin{aligned} & \text { FR-E820-0330(7.5K) } \\ & \text { FR-E820-0330(7.5K)E } \\ & \text { FR-E820-0330(7.5K)SCE } \end{aligned}$						
	$\begin{aligned} & \hline \text { FR-E820-0470(11K) } \\ & \text { FR-E820-0470(11K)E } \\ & \text { FR-E820-0470(11K)SCE } \end{aligned}$	220	195	260	244	190	6
	$\begin{aligned} & \hline \text { FR-E820-0600(15K) } \\ & \text { FR-E820-0600(15K)E } \\ & \text { FR-E820-0600(15K)SCE } \end{aligned}$						
	$\begin{aligned} & \hline \text { FR-E820-0760(18.5K) } \\ & \text { FR-E820-0760(18.5K)E } \\ & \text { FR-E820-0760(18.5K)SCE } \end{aligned}$		200	350	330		10
	$\begin{aligned} & \text { FR-E820-0900(22K) } \\ & \text { FR-E820-0900(22K)E } \\ & \text { FR-E820-0900(22K)SCE } \end{aligned}$						
$\begin{aligned} & \text { ๗ } \\ & \text { \% } \\ & 0 \\ & \text { O} \\ & \text { 아 } \end{aligned}$	$\begin{aligned} & \text { FR-E840-0016(0.4K) } \\ & \text { FR-E840-0016(0.4K)E } \\ & \text { FR-E840-0016(0.4K)SCE } \end{aligned}$	108	96	128	118	129.5	
	$\begin{aligned} & \hline \text { FR-E840-0026(0.75K) } \\ & \text { FR-E840-0026(0.75K)E } \\ & \text { FR-E840-0026(0.75K)SCE } \end{aligned}$						
	$\begin{aligned} & \hline \text { FR-E840-0040(1.5K) } \\ & \text { FR-E840-0040(1.5K)E } \\ & \text { FR-E840-0040(1.5K)SCE } \end{aligned}$						
	$\begin{aligned} & \text { FR-E840-0060(2.2K) } \\ & \text { FR-E840-0060(2.2K)E } \\ & \text { FR-E840-0060(2.2K)SCE } \end{aligned}$	140				135	5
	FR-E840-0095(3.7K) FR-E840-0095(3.7K)E FR-E840-0095(3.7K)SCE	140	128	150	138		
	FR-E840-0120(5.5K) FR-E840-0120(5.5K)E FR-E840-0120(5.5K)SCE		208	150	138	147	
	$\begin{aligned} & \hline \text { FR-E840-0170(7.5K) } \\ & \text { FR-E840-0170(7.5K)E } \\ & \text { FR-E840-0170(7.5K)SCE } \end{aligned}$		208			147	
	$\begin{aligned} & \hline \text { FR-E840-0230(11K) } \\ & \text { FR-E840-0230(11K)E } \\ & \text { FR-E840-0230(11K)SCE } \end{aligned}$	220	195	260	244		6
	$\begin{aligned} & \text { FR-E840-0300(15K) } \\ & \text { FR-E840-0300(15K)E } \\ & \text { FR-E840-0300(15K)SCE } \end{aligned}$	220	195	260	244	190	6
	$\begin{aligned} & \text { FR-E840-0380(18.5K) } \\ & \text { FR-E840-0380(18.5K)E } \\ & \text { FR-E840-0380(18.5K)SCE } \end{aligned}$		200	350	330	190	10
	$\begin{aligned} & \hline \text { FR-E840-0440(22K) } \\ & \text { FR-E840-0440(22K)E } \\ & \text { FR-E840-0440(22K)SCE } \end{aligned}$		200	350	330		10

## A APPENDIX

## A. 1 Instructions for Compliance with the EU Directives

The EU Directives are issued to standardize different national regulations of the EU Member States and to facilitate free movement of the equipment, whose safety is ensured, in the EU territory.
Since 1996, compliance with the EMC Directive that is one of the EU Directives has been legally required. Since 1997, compliance with the Low Voltage Directive, another EU Directive, has been also legally required. When a manufacturer confirms its equipment to be compliant with the EMC Directive and the Low Voltage Directive, the manufacturer must declare the conformity and affix the CE marking.

- The authorized representative in the EU

The authorized representative in the EU is shown below:
Name: Mitsubishi Electric Europe B.V.
Address: Mitsubishi-Electric-Platz 1, 40882 Ratingen, Germany

## A.1.1 EMC Directive

We declare that this inverter conforms with the EMC Directive and affix the CE marking on the inverter.

- EMC Directive: 2014/30/EU
- Standard(s): EN61800-3:2004+A1:2012 (Second environment / PDS Category "C3")
- This inverter is not intended to be used on a low-voltage public network which supplies domestic premises. When using the inverter in a residential area, take appropriate measures and ensure the conformity of the inverter used in the residential area.
- Radio frequency interference is expected if used on such a network.
- The installer shall provide a guide for installation and use, including recommended mitigation devices.


## NOTES

- First environment

Environment including residential buildings. Includes buildings directly connected without a transformer to the low voltage power supply network which supplies power to residential buildings.

- Second environment

Environment including all buildings except buildings directly connected without a transformer to the low voltage power supply network which supplies power to residential buildings.

## NOTES

- Set the EMC Directive compliant EMC filter to the inverter. Insert line noise filters and ferrite cores to the power and control cables as required.
- Connect the inverter to an earthed power supply.
- Install a motor and a control cable according to the EMC Installation Guidelines (BCN-A21041-204) and Technical News (MF-S-114, 115) according to the instruction.
- To make full use of the EMC Directive compliant noise filter, motor cable lengths should not exceed 20 m .
- Ensure that the finalized system which includes an inverter complies with the EMC Directive.


## A.1.2 Low Voltage Directive

We have self-confirmed our inverters as products compliant to the Low Voltage Directive 2014/35/EU (conforming standard EN 61800-5-1) and place the CE mark on the inverters.

## Outline of instructions

- Do not use an earth leakage current breaker as an electric shock protector without connecting the equipment to the earth. Connect the equipment to the earth securely.
- Wire the earth terminal independently. (Do not connect two or more cables to one terminal.)
- Use the cable sizes on page 17 under the following conditions.
- Surrounding air temperature: $40^{\circ} \mathrm{C}$ maximum

If conditions are different from above, select appropriate wire according to EN60204 Appendix C TABLE 5.

- Use a tinned (plating should not include zinc) crimping terminal to connect the earth cable. When tightening the screw, be careful not to damage the threads.
For use as a product compliant with the Low Voltage Directive, use PVC cable whose size is indicated on page 17.
- Use the moulded case circuit breaker and magnetic contactor which conform to the EN or IEC Standard.
- This product can cause a DC current in the protective earthing conductor. Where a residual current-operated protective (RCD) or monitoring (RCM) device is used for protection in case of direct or indirect contact, only an RCD or RCM of Type B is allowed on the supply side of this product.
- Use the inverter under the conditions of overvoltage category III specified in IEC 60664.
- To use the inverter under the conditions of pollution degree 3, install it in the enclosure of IP54 or higher.


If the cover is not fixed, the inverter protective structure is regarded as IP00.

## A. 2 Instructions for UL and cUL

(Conforming standard UL 61800-5-1, CSA C22.2 No.14)

## A.2.1 General precautions

## AWARNING

The bus capacitor discharge time is 10 minutes. Before starting wiring or inspection, switch power off, wait for more than 10 minutes, and check for residual voltage between terminal P/+ and N/- with a meter etc., to avoid a hazard of electrical shock.

## A.2.2 Product handling information / Informations sur la manipulation du produit

## AWARNING

Operation of this product requires detailed installation and operation instructions provided in this Safety Guideline and the Instruction Manual (Connection) intended for use with this product. Please forward relevant manuals to the end user. The manuals can also be downloaded in PDF form from the Mitsubishi Electric FA Global Website. To order manuals, please contact your sales representative.

## A.2.3 Branch circuit protection

For installation in the United States, branch circuit protection must be provided in accordance with the National Electrical Code and any applicable provincial codes. For installation in Canada, branch circuit protection must be provided in accordance with the Canadian Electrical Code and any applicable provincial codes.Short circuit protection of the inverter cannot be used as branch circuit protection. Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local code.

- Precautions for opening the branch-circuit protective device


## AWARNING

If the fuse melts down or the breaker trips on the input side of this product, check for wiring faults (such as short circuits). Identify and remove the cause of melting down or the trip before replacing the fuse or resetting the tripped breaker (or before applying the power to the inverter again).

## - Fuse selection

For installation in the United States, the semiconductor fuses shown in the following table must be provided, in accordance with the National Electrical Code and any applicable local codes. For installation in Canada, the semiconductor fuses shown in the following table must be provided, in accordance with the Canadian Electrical Code and any applicable local codes. The following semiconductor fuses cannot be used as branch circuit protection. For branch circuit protection, use appropriate fuses or install a breaker.

## Standard model/Ethernet model

Inverter model	Cat. No	Manufacturer	Rating
$\begin{aligned} & \text { FR-E820-0008(0.1K), } \\ & 0015(0.2 \mathrm{~K}) \end{aligned}$	170M1408, 170M1308 or 170M1358	Bussmann	700 V, 10 A
FR-E820-0030(0.4K)	170M1409,   170M1309 or 170M1359	Bussmann	700 V, 16 A
FR-E820-0050(0.75K)	170M1411, 170M1311 or 170M1361	Bussmann	700 V, 25 A
FR-E820-0080(1.5K)	170M1413,   170M1313 or   170M1363	Bussmann	$700 \mathrm{~V}, 40 \mathrm{~A}$
FR-E820-0110(2.2K)	170M1414, 170M1314 or 170M1364	Bussmann	700 V, 50 A
FR-E820-0175(3.7K)	170M1416,   170M1316 or   170M1366	Bussmann	$700 \mathrm{~V}, 80 \mathrm{~A}$
FR-E820-0240(5.5K)	170M1418,   170M1318 or   170M1368	Bussmann	$700 \mathrm{~V}, 125 \mathrm{~A}$
FR-E820-0330(7.5K)	170M1419 170M1319 or 170M1369	Bussmann	$700 \mathrm{~V}, 160 \mathrm{~A}$
FR-E820-0470(11)	$\begin{aligned} & \text { 170M1420, } \\ & \text { 170M1320 or } \\ & \text { 170M1370 } \end{aligned}$	Bussmann	$700 \mathrm{~V}, 200 \mathrm{~A}$
FR-E820-0600(15K)	170M1421,   170M1321 or 170M1471	Bussmann	$700 \mathrm{~V}, 250 \mathrm{~A}$
FR-E820-0760(18.5K)	170M1422, 170M1322 or 170M1472	Bussmann	$700 \mathrm{~V}, 315 \mathrm{~A}$
FR-E820-0900(22K)	170M1422, 170M1322 or 170M1472	Bussmann	$700 \mathrm{~V}, 315 \mathrm{~A}$
FR-E840-0016(0.4K)	170M1408	Bussmann	$700 \mathrm{~V}, 10 \mathrm{~A}$
FR-E840-0026(0.75K)	170M1410	Bussmann	$700 \mathrm{~V}, 20 \mathrm{~A}$


Inverter model	Cat. No	Manufacturer	Rating
FR-E840-0040(1.5K)	170M1411	Bussmann	$700 \mathrm{~V}, 25 \mathrm{~A}$
FR-E840-0060(2.2K)	170M1412	Bussmann	$700 \mathrm{~V}, 32 \mathrm{~A}$
FR-E840-0095(3.7K)	170M1414	Bussmann	$700 \mathrm{~V}, 50 \mathrm{~A}$
$\begin{aligned} & \text { FR-E840-0120(5.5K), } \\ & 0170(7.5 \mathrm{~K}) \end{aligned}$	170M1416	Bussmann	$700 \mathrm{~V}, 80 \mathrm{~A}$
FR-E840-0230(11K)	170M1419,   170M1319 or   170M1469	Bussmann	$700 \mathrm{~V}, 160 \mathrm{~A}$
FR-E840-0300(15K)	170M1419,   170M1319 or   170M1469	Bussmann	$700 \mathrm{~V}, 160 \mathrm{~A}$
FR-E840-0380(18.5K)	170M1420, 170M1320 or 170M1370	Bussmann	$700 \mathrm{~V}, 200 \mathrm{~A}$
FR-E840-0440(22K)	170M1421, 170M1321 or 170M1471	Bussmann	$700 \mathrm{~V}, 250 \mathrm{~A}$
FR-E820S-0008(0.1K)	170M1408	Bussmann	$700 \mathrm{~V}, 10 \mathrm{~A}$
FR-E820S-0015(0.2K)	170M1409	Bussmann	$700 \mathrm{~V}, 16 \mathrm{~A}$
FR-E820S-0030(0.4K)	170M1411	Bussmann	$700 \mathrm{~V}, 25 \mathrm{~A}$
FR-E820S-0050(0.75K)	170M1413	Bussmann	$700 \mathrm{~V}, 40 \mathrm{~A}$
FR-E820S-0080(1.5K)	170M1415	Bussmann	$700 \mathrm{~V}, 63 \mathrm{~A}$
FR-E820S-0110(2.2K)	170M1417	Bussmann	$700 \mathrm{~V}, 100 \mathrm{~A}$

## Safety communication model

Inverter model	Cat. No	Manufacturer	Rating
$\begin{aligned} & \text { FR-E820-0008(0.1K), } \\ & 0015(0.2 \mathrm{~K}) \end{aligned}$	170M1408, 170M1308 or 170M1358	Bussmann	$700 \mathrm{~V}, 10 \mathrm{~A}$
FR-E820-0030(0.4K)	170M1409, 170M1309 or 170M1359	Bussmann	700 V, 16 A
FR-E820-0050(0.75K)	170M1411,   170M1311 or   170M1361	Bussmann	$700 \mathrm{~V}, 20 \mathrm{~A}$
FR-E820-0080(1.5K)	170M1413,   170M1313 or   170M1363	Bussmann	700 V, 32 A
FR-E820-0110(2.2K)	170M1414, 170M1314 or 170M1364	Bussmann	$700 \mathrm{~V}, 50 \mathrm{~A}$
FR-E820-0175(3.7K)	170M1416, 170M1316 or 170M1366	Bussmann	$700 \mathrm{~V}, 80 \mathrm{~A}$
FR-E820-0240(5.5K)	170M1418,   170M1318 or   170M1368	Bussmann	$700 \mathrm{~V}, 100 \mathrm{~A}$
FR-E820-0330(7.5K)	170M1419,   170M1319 or 170M1369	Bussmann	$700 \mathrm{~V}, 160 \mathrm{~A}$
FR-E820-0470(11)	170M1420, 170M1320 or 170M1370	Bussmann	$700 \mathrm{~V}, 200 \mathrm{~A}$
FR-E820-0600(15K)	170M1421, 170M1321 or 170M1471	Bussmann	$700 \mathrm{~V}, 250 \mathrm{~A}$
FR-E820-0760(18.5K)	170M1422, 170M1322 or 170M1472	Bussmann	$700 \mathrm{~V}, 315 \mathrm{~A}$
FR-E820-0900(22K)	170M1422,   170M1322 or   170M1472	Bussmann	$700 \mathrm{~V}, 315 \mathrm{~A}$
FR-E840-0016(0.4K)	170M1408	Bussmann	$700 \mathrm{~V}, 10 \mathrm{~A}$
$\begin{aligned} & \text { FR-E840-0026(0.75K), } \\ & 0040(1.5 \mathrm{~K}) \end{aligned}$	170M1409	Bussmann	700 V, 16 A


Inverter model	Cat. No	Manufacturer	Rating
FR-E840-0060(2.2K)	170M1312	Bussmann	$700 \mathrm{~V}, 32 \mathrm{~A}$
FR-E840-0095(3.7K)	170M1413	Bussmann	$700 \mathrm{~V}, 40 \mathrm{~A}$
FR-E840-0120(5.5K)	170M1414	Bussmann	$700 \mathrm{~V}, 50 \mathrm{~A}$
FR-E840-0170(7.5K)	170M1416	Bussmann	$700 \mathrm{~V}, 80 \mathrm{~A}$
FR-E840-0230(11K)	170M1419,   170M1319 or   170M1469	Bussmann	$700 \mathrm{~V}, 160 \mathrm{~A}$
FR-E840-0300(15K)	170M1419,   170M1319 or   170M1469	Bussmann	$700 \mathrm{~V}, 160 \mathrm{~A}$
FR-E840-0380(18.5K)	$\begin{aligned} & \text { 170M1420, } \\ & \text { 170M1320 or } \\ & \text { 170M1370 } \end{aligned}$	Bussmann	$700 \mathrm{~V}, 200 \mathrm{~A}$
FR-E840-0440(22K)	170M1421,   170M1321 or 170M1471	Bussmann	$700 \mathrm{~V}, 250 \mathrm{~A}$
FR-E820S-0008(0.1K)	170M1408	Bussmann	$700 \mathrm{~V}, 10 \mathrm{~A}$
FR-E820S-0015(0.2K)	170M1409	Bussmann	$700 \mathrm{~V}, 16 \mathrm{~A}$
FR-E820S-0030(0.4K)	170M1411	Bussmann	$700 \mathrm{~V}, 25 \mathrm{~A}$
FR-E820S-0050(0.75K)	170M1413	Bussmann	$700 \mathrm{~V}, 40 \mathrm{~A}$
FR-E820S-0080(1.5K)	170M1415	Bussmann	$700 \mathrm{~V}, 63 \mathrm{~A}$
FR-E820S-0110(2.2K)	170M1417	Bussmann	$700 \mathrm{~V}, 100 \mathrm{~A}$

## A.2.4 Capacitor discharge time

## CAUTION

- Risk of Electric Shock

Before wiring or inspection, check that the LED display of the operation panel is OFF. Any person who is involved in wiring or inspection shall wait for 10 minutes or longer after power OFF, and check that there are no residual voltage using a digital multimeter or the like. The capacitor is charged with high voltage for some time after power OFF, and it is dangerous.

## A.2.5 Wiring of the power supply and motor

Refer to the National Electrical Code (Article 310) regarding the allowable current of the cable. Select the cable size for $125 \%$ of the rated current according to the National Electrical Code (Article 430). For wiring the input (R/L1, S/L2, T/L3) and output ( $\mathrm{U}, \mathrm{V}, \mathrm{W}$ ) terminals of the inverter, use the UL listed copper, stranded wires (rated at $75^{\circ} \mathrm{C}$ ) and round crimp terminals. Crimp the terminals with the crimping tool recommended by the terminal manufacturer.
The following table shows examples when the inverter rating is the LD rating, when the cable is the THHW cable with continuous maximum permissible temperature of $75^{\circ} \mathrm{C}$, when the surrounding air temperature is $30^{\circ} \mathrm{C}$ or less, and the wiring length is 20 m or shorter.

Inverter model	$\begin{aligned} & \text { Terminal screw } \\ & \text { size } \end{aligned}$	Tightening torque ( $\mathrm{N} \cdot \mathrm{m}$ )	Crimp terminal		Cable gauge   AWG	
			R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	U, V, W
FR-E820-0008(0.1K) to 0050(0.75K)	M3.5	1.2	2-3.5	2-3.5	14	14
FR-E820-0080(1.5K)	M4	1.5	3.5-4	2-4	12	14
FR-E820-0110(2.2K)	M4	1.5	5.5-4	2-4	10	14
FR-E820-0175(3.7K)	M4	1.5	8-4	5.5-4	8	10
FR-E820-0240(5.5K)	M5	2.5	8-5	8-5	8	8
FR-E820-0330(7.5K)	M5	2.5	14-5	8-5	6	8
FR-E820-0470(11)	M5	2.5	14-5	14-5	4	4
FR-E820-0600(15K)	M6(M5)	4.4	22-6	22-6	3	3
FR-E820-0760(18.5K)	M8(M6)	7.8	38-8	22-8	1	2
FR-E820-0900(22K)	M8(M6)	7.8	38-8	38-8	1/0	1/0
FR-E840-0016(0.4K) to 0060(2.2K)	M4	1.5	2-4	2-4	14	14
FR-E840-0095(3.7K)	M4	1.5	5.5-4	2-4	10	14
FR-E840-0120(5.5K), 0170(7.5K)	M4	1.5	8-4	5.5-4	8	10
FR-E840-0230(11K)	M4	1.5	5.5-4	5.5-4	6	8
FR-E840-0300(15K)	M5	2.5	8-5	8-5	4	6
FR-E840-0380(18.5K)	M6	4.4	14-6	8-6	4	6
FR-E840-0440(22K)	M6	4.4	14-6	14-6	3	4
FR-E820S-0008(0.1K) to 0030(0.4K)	M3.5	1.2	2-3.5	2-3.5	14	14
FR-E820S-0050(0.75K)	M4	1.5	2-4	2-4	14	14
FR-E820S-0080(1.5K)	M4	1.5	2-4	2-4	14	14
FR-E820S-0110(2.2K)	M4	1.5	5.5-4	2-4	12	14

[^3]
## A.2.6 Short circuit ratings

- 200 V class

Suitable for use in a circuit capable of delivering not more than 100 kA rms symmetrical amperes, 240 V maximum.

- 400 V class

Suitable for use in a circuit capable of delivering not more than 100kA rms symmetrical amperes, $480 \mathrm{Y} / 277 \mathrm{~V}$ maximum.

## A.2.7 Motor overload protection

The following explains the details of the motor overload protection.
When using the electronic thermal relay function as motor overload protection, set the rated motor current to Pr. 9 "Electronic thermal O/L relay".


This function detects the overload (overheat) of the motor and shut off the inverter output by stopping the operation of the transistor at the inverter output side. (The operation characteristic is shown on the left.)
When using the Mitsubishi Electric constant-torque motor set one of "10", "13" to "16", "50", "53", "70", "73", "1800" or , "1803" in Pr. 71. (This enables a 100\% constant-torque characteristic in the low-speed range.) Set the rated current of the motor in Pr. 9.
${ }^{* 1}$ When $50 \%$ of the inverter rated output current (current value) is set in Pr. 9.
${ }^{*} 2$ The \% value denotes the percentage to the inverter rated output current. It is not the percentage to the motor rated current.
${ }^{* 3}$ When the electronic thermal relay function dedicated to the Mitsubishi Electric constant-torque motor is set, this characteristic curve applies to operation at 6 Hz or higher.

- The internal accumulated heat value of the electronic thermal $O / L$ relay is reset to the initial value by the inverter's power reset or reset signal input. Avoid unnecessary reset and power-OFF.
- Install an external thermal relay (OCR) between the inverter and motors to operate several motors, a multi-pole motor or a dedicated motor with one inverter.
When configuring an external thermal relay, note that the current indicated on the motor rating plate is affected by the line-to-line leakage current. (Refer to the Instruction Manual (Function).) The cooling effect of the motor drops during low-speed operation. Use a motor with built-in thermal protector. When the difference between the inverter and motor capacities is large and the set value is small, the protective characteristics of the electronic thermal relay function will be deteriorated. Use an external thermal relay in such cases.
- A dedicated motor cannot be protected by the electronic thermal relay. Use an external thermal relay.
- Motor over temperature sensing is not provided by the drive.

HEADQUARTERS	EUROPEAN REPRESENTATIVES	EUROPEAN REPRESENTATIVES		EURASIAN REPRESENTATIVES
Mitsubishi Electric Europe B.V.   EUROPE   Mitsubishi-Electric-Platz 1   D-40882 Ratingen   Phone: +49 (0)2102 / 486-2048   Fax: +49 (0)2102 / 486-1120	GEVA AUSTRIA   Wiener Straße 89    A-2500 Baden    Phone: $+43(0) 2252 / 855520$    Fax: $+43(0)(0252 / 48860$	INTEHSIS SRL   bld. Traian 23/1   MD-2060 Kishinev   Phone: +373 (0) 22 / 664242   Fax: +373 (0)22 / 664280	MOLDOVA	TOO Kazpromavtomatika UL.ZHAMBYLA 28, KAZ-100017 Karaganda Phone:+ $+77212 / 501000$ Fax: $+77212 / 501150$
Mitsubishi Electric Europe B.V.   CZECH REP. Pekařská 621/7   CZ-155 00 Praha 5   Phone: +420734 402587   Fax: +420 251551471	O00 TECHNIKON BELARUS   Prospect Nezavisimosti 177-9    BY-220125 Minsk    Phone: $+375(0) 17 / 3931177$    Fax: +375 (0) $17 / 3930081$	Fonseca S.A.   R. João Francisco do Casal 87/89 PT-3801-997 Aveiro, Esgueira Phone: +351 (0)234/303900 Fax: +351 (0)234/303910	PORTUGAL	MIDDLE EAST REPRESENTATIVE
Mitsubishi Electric Europe B.V.   FRANCE   25, Boulevard des Bouvets   F-92741 Nanterre Cedex   Phone: + 33 (0) $1 / 55685695$   Fax: +33 (0) 1 / 55685757	INEA RBT d.o.o. BOSNIA AND HERZEGOVINA Stegne 11. SI-1000 Ljubljana Phone: + $386(0) 1 / 5138116$ Fax: $+386(0) 1 / 5138170$	SIRIUS TRADING \& SERVICES SRL Aleea Lacul Morii Nr. 3 RO-060841 Bucuresti, Sector 6 Phone: +40 (0)21 / 4304006 Fax: +40 (0)21 / 4304002	ROMANIA	3 Roxy Square   ET-11341 Heliopolis, Cairo   Phone: +202 24552559   Fax: +202 245266116
Mitsubishi Electric Europe B.V.   HUNGARY   Madarász Irodapark, MadarászViktor u. 47-49.   HU-1138 Budapest   Phone: +36703322 372	AKHNATON BULGARIA   4, Andrei Ljapchev Blvd., PO Box 21    BG-1755 Sofia    Phone: +359 (0)2 28176000	INEA SR d.o.o. UI. Karadjordjeva 12/217 SER-11300 Smederevo Phone: +38169 1722725	SERBIA	Rehov Hamerkava 19 IL-58851 Holon Phone: +972 (0)3 / 5595462 Fax: +972 (0)3/5560182
Mitsubishi Electric Europe B.V.   IRELAND   Westgate Business Park, Ballymount   IRL-Dublin 24   Phone: +353 (0) 14198800   Fax: +353 (0) 14198890	INEA CR   CROATIA   Losinjska 4 a   HR-10000 Zagreb   Phone: +385 (0) $1 / 36$ 940-01/-02/ -03	SIMAP SK (Západné Slovensko)   Dolné Pažite 603/97   SK-911 06 Trenčín   Phone: +421 (0)327430472   Fax: +421 (0)32 7437520	SLOVAKIA	CEG LIBAN   Cebaco Center/Block A Autostrade DORA   Lebanon-Beirut   Phone: +961 (0) $1 / 240445$   Fax: +961 (0) $/ 240193$
Mitsubishi Electric Europe B.V.    Viale Colleoni 7 Palazzo Sirio    I-20864 AgratY Branz (MB)    Phone: $+39039 / 60531$    Fax: $+39039 / 6053312$	Fax: +385 (0)1/36940-03    SIMAP CZ s.r.0. CZECH REPUBLIC   Nové sady $.888 / 2$    CZ-602 00 Brno    Phone: +420777731900	INEA RBT d.o.o.   Stegne 11   SI-1000 Ljubljana   Phone: +386 (0) $1 / 5138116$   Fax: +386 (0) $1 / 5138170$	Slovenia	AFRICAN REPRESENTATIVE
Mitsubishi Electric Europe B.V.   Nijverheidsweg 23C   NL-3641RP Mijdrecht   Phone: +31 (0) 297250350   NETHERLANDS	HANS FØLLSGAARD A/S DENMARK   Theilgaards Torv 1    DK-4600 Køge    Phone: +4543208600	OMNI RAY AG Im Schörli 5 CH-8600 Dübendorf Phone: +41 (0)44 / 8022880	SWITZERLAND	20 Waterford Office Park 189 Witkoppen Road   ZA-Fourways   Phone: + 27 (0) 11 / 6588100   Fax: + 27 (0) $11 / 6588101$
Mitsubishi Electric Europe B.V.   POLAND ul. Krakowska 48   PL-32-083 Balice   Phone: +48 (0) 123476500   Fax: +48 (0) 126304701	Fax: +4543968855    Electrobit 0Ü    Pärnu mnt. 160 i    EST-11317, Tallinn    Phone: +372 6518140	Fax: +41 (0)44/802 2828   CSC- AUTOMATION Ltd.   4 B, Yevhena Sverstyuka Str.   UA-02002 Kiev   Phone: +380 (0)44 / 4943344	UKRAINE	
Mitsubishi Electric (Russia) LLC   RUSSIA   2 bld. 1, Letnikovskaya st.   RU- 115114 Moscow   Phone: +7 495 / 7212070   Fax: +7495 / 7212071	UTU Automation 0y FINLAND   Peltotiti 37i    FIN-28400 Ulvila    Phone: $+358(0) 207 / 463500$    Fax: $+358207 / 463501$			
Mitsubishi Electric Europe B.V.   SLOVAKIA Levická 7   SK-949 01 Nitra   Phone: +421 917624036	UTECO A.B.E.E.   5, Mavrogenous Str.   GR-18542 Piraeus   Phone: +30 (0)211/ 1206-900			
Mitsubishi Electric Europe B.V.   E-08190 Sant Cugat del Vallés (Barcelona)   Phone: +34 (0) $93 / 5653131$   Fax: +34 (0) 93 / 5891579	MELTRADEKft. HUNGARY   Fertó utca 14.   HU-1107 Budapest   Phone: + 36 (0) $1 /$ / 431-9726			
Mitsubishi Electric Europe B.V. (Scandinavia) SWEDEN Hedvig Möllers gata 6 ,   SE- 22355 Lund   Phone: +46 (0) 86251000	OAK Integrator Products SIA   LATVIA   Ritausmas iela 23   LV-1058 Riga			
Mitsubishi Electric Turkey Elektrik Ürünleri A.S.S. TURKEY   Fabrika Otomasyonu Merkezi   Şerifali Mahallesi Kale Sokak No:41   TR-34775 Ümraniye-ISTANBUL   Phone: +90 (216) 9692500   Fax: +90 (216) / 6614447	Automatikos Centras, UAB LITHUANIA   Pramones spr. 17 H    LT- 51327 Kaunas    Phone: +377037262707    Fax: +37037456605			
Mitsubishi Electric Europe B.V.   Travellers Lane   UK-Hatfield, Herts. AL10 8XB   Phone: +44 (0)1707 / 288780   Fax: +44 (0) 1707 / 278695	ALFATRADE Ltd.   MALTA   99, Paola Hill   Malta-Paola PLA 1702   Phone: +356 (0)21/697816   Fax: +356 (0)21/ 697817			
Mitsubishi Electric Corporation   JAPAN   Tokyo Building 2-7-3   Marunouchi, Chiyoda-ku   Tokyo 100-8310   Phone: +81 (3) 3218-2111   Fax: +81 (3) 3218-2185				
Mitsubishi Electric Automation, Inc.   500 Corporate Woods Parkway   Vernon Hills, IL 60061   Phone: +1 (847) 478-2100   Fax: +1 (847) 478-0328				


[^0]:    Thank you for choosing this Mitsubishi Electric Inverter.
    This Installation guideline and the enclosed CD-ROM give handling information and precautions for use of this product.
    Do not use this product until you have a full knowledge of the equipment, the safety information and the instructions.
    Please forward this Installation guideline to the end user.

[^1]:    *1 Temperature applicable for a short time, for example, in transit.

[^2]:    *1 To avoid an electric shock hazard, install a magnetic contactor (MC) at the input side of the inverter.

[^3]:    *1 The screw size for terminals R/L1, S/L2, T/L3, U, V, W, PR, P/+, N/-, and P1, and the earthing (grounding) terminal is shown.

